304 research outputs found

    Evaluation of aerosol optical thickness over Malaysia based on multi-source ground and satellite data

    Get PDF
    This study evaluates the spatiotemporal distribution of aerosol optical thickness (AOT) over Malaysia. The significance of aerosols in regional and global climate change assessment has become a pressing topic in recent climate discussions. Two different approaches are used in measuring AOT; satellite imagery and ground measurement approaches. However, the satellite approach is deemed the best way for monitoring the patterns and transport of aerosols largely due to its extensive spatial coverage and reliable repetitive measurements. The data in this study were obtained from a Sea-viewing Wide Field-of-view Sensor (SeaWiFS), a Multi-angle Imaging Spectroradiometer (MISR), and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors based on a NASA-operated Giovanni portal. Ground-based Aerosol Robotic Network (AERONET) datasets from two sites over the study area were also used. The results show that the highest AOT ground values of 1.93 and 2.00 were recorded in September 2015, at USM station and Kuching station, respectively. Throughout the 15 years of recorded data, the monthly average value of AOT reached its highest values in September, October, and November. In these months, the value of AOT went above 0.40, unlike in other months of the year. Significantly, the results indicate that Malaysian air quality can be evaluated based on AOT values, as these show the variation in optical properties of aerosol

    A new indicator on the impact of large-scale circulation on wintertime particulate matter pollution over China

    Get PDF
    Extreme particulate matter (PM) air pollution of January 2013 in China was found to be associated with an anomalous eastward extension of the Siberian High (SH). We developed a Siberian High position index (SHPI), which depicts the mean longitudinal position of the SH, as a new indicator of the large-scale circulation pattern that controls wintertime air quality in China. This SHPI explains 58 % (correlation coefficient of 0.76) of the interannual variability of wintertime aerosol optical depth (AOD) retrieved by MODIS over North China (NC) during 2001–2013. By contrast, the intensity-based conventional Siberian High index (SHI) shows essentially no skill in predicting this AOD variability. On the monthly scale, some high-AOD months for NC are accompanied with extremely high SHPIs; notably, extreme PM pollution of January 2013 can be explained by the SHPI value exceeding 2.6 times the standard deviation of the 2001–2013 January mean. When the SH extends eastward, thus higher SHPI, prevailing northwesterly winds over NC are suppressed not only in the lower troposphere but also in the middle troposphere, leading to reduced southward transport of pollution from NC to South China (SC). The SHPI hence exhibits a significantly negative correlation of −0.82 with MODIS AOD over SC during 2001–2013, although the robustness of this correlation depends on that of satellite-derived AOD. The suppressed northwesterly winds during high-SHPI winters also lead to increased relative humidity (RH) over NC. Both the wind and RH changes are responsible for enhanced PM pollution over NC during the high-SHPI winters

    Evaluation of Aerosol Optical Depth and Aerosol Models from VIIRS Retrieval Algorithms over North China Plain

    Get PDF
    The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on Suomi National Polar-orbiting Partnership (S-NPP) satellite in late 2011. Similar to the Moderate resolution Imaging Spectroradiometer (MODIS), VIIRS observes top-of-atmosphere spectral reflectance and is potentially suitable for retrieval of the aerosol optical depth (AOD). The VIIRS Environmental Data Record data (VIIRS_EDR) is produced operationally by NOAA, and is based on the MODIS atmospheric correction algorithm. The MODIS-like VIIRS data (VIIRS_ML) are being produced experimentally at NASA, from a version of the dark-target algorithm that is applied to MODIS. In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over the North China Plain (NCP) are evaluated using the ground-based CE318 Sunphotometer (CE318) measurements during 2 May 2012-31 March 2014 at three sites. These sites represent three different surface types: urban (Beijing), suburban (XiangHe) and rural (Xinglong). Firstly, we evaluate the retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias (MB) of 0.04-0.06 and the correlation of 0.83-0.86, with the largest MB (0.10-0.15) observed in Beijing. In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13-0.14 and a higher correlation (0.93-0.94) with CE318 AOD. Secondly, we evaluate the aerosol model types assumed by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant model types during the evaluation period. The overall accuracy rate of the aerosol model used in VIIRS_ML over NCP three sites (0.48) is higher than that of VIIRS_EDR (0.27). The differences in Single Scattering Albedo (SSA) at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015, but high seasonal differences are found especially over the Xinglong site. The values of SSA from VIIRS_EDR are higher than that observed by CE318 over all sites and all assumed aerosol modes, with a positive bias of 0.02-0.04 for fine mode, 0.06-0.12 for coarse mode and 0.03-0.05 for bi-mode at 440nm. The overestimation of SSA but positive AOD MB of VIIRS_EDR indicate that other factors (e.g. surface reflectance characterization or cloud contamination) are important sources of error in the VIIRS_EDR algorithm, and their effects on aerosol retrievals may override the effects from non-ideality in these aerosol models

    Observations of the Interaction and Transport of Fine Mode Aerosols With Cloud and/or Fog in Northeast Asia From Aerosol Robotic Network and Satellite Remote Sensing

    Get PDF
    Analysis of Sun photometer measured and satellite retrieved aerosol optical depth (AOD) datahas shown that major aerosol pollution events with very highfine mode AOD (>1.0 in midvisible) in theChina/Korea/Japan region are often observed to be associated with significant cloud cover. This makesremote sensing of these events difficult even for high temporal resolution Sun photometer measurements.Possible physical mechanisms for these events that have high AOD include a combination of aerosolhumidification, cloud processing, and meteorological covariation with atmospheric stability andconvergence. The new development of Aerosol Robotic Network Version 3 Level 2 AOD with improved cloudscreening algorithms now allow for unprecedented ability to monitor these extremefine mode pollutionevents. Further, the spectral deconvolution algorithm (SDA) applied to Level 1 data (L1; no cloud screening)provides an even more comprehensive assessment offine mode AOD than L2 in current and previous dataversions. Studying the 2012 winter-summer period, comparisons of Aerosol Robotic Network L1 SDA dailyaveragefine mode AOD data showed that Moderate Resolution Imaging Spectroradiometer satellite remotesensing of AOD often did not retrieve and/or identify some of the highestfine mode AOD events in thisregion. Also, compared to models that include data assimilation of satellite retrieved AOD, the L1 SDAfinemode AOD was significantly higher in magnitude, particularly for the highest AOD events that were oftenassociated with significant cloudiness

    East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIR_(CPC))

    Get PDF
    Aerosols have significant and complex impacts on regional climate in East Asia. Cloud‐aerosol‐precipitation interactions (CAPI) remain most challenging in climate studies. The quantitative understanding of CAPI requires good knowledge of aerosols, ranging from their formation, composition, transport, and their radiative, hygroscopic, and microphysical properties. A comprehensive review is presented here centered on the CAPI based chiefly, but not limited to, publications in the special section named EAST‐AIRcpc concerning (1) observations of aerosol loading and properties, (2) relationships between aerosols and meteorological variables affecting CAPI, (3) mechanisms behind CAPI, and (4) quantification of CAPI and their impact on climate. Heavy aerosol loading in East Asia has significant radiative effects by reducing surface radiation, increasing the air temperature, and lowering the boundary layer height. A key factor is aerosol absorption, which is particularly strong in central China. This absorption can have a wide range of impacts such as creating an imbalance of aerosol radiative forcing at the top and bottom of the atmosphere, leading to inconsistent retrievals of cloud variables from space‐borne and ground‐based instruments. Aerosol radiative forcing can delay or suppress the initiation and development of convective clouds whose microphysics can be further altered by the microphysical effect of aerosols. For the same cloud thickness, the likelihood of precipitation is influenced by aerosols: suppressing light rain and enhancing heavy rain, delaying but intensifying thunderstorms, and reducing the onset of isolated showers in most parts of China. Rainfall has become more inhomogeneous and more extreme in the heavily polluted urban regions

    Evaluation of aerosol optical depth and aerosol models from VIIRS retrieval algorithms over North China Plain

    Get PDF
    The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on Suomi National Polar-orbiting Partnership (S-NPP) satellite in late 2011. Similar to the Moderate resolution Imaging Spectroradiometer (MODIS), VIIRS observes top-of-atmosphere spectral reflectance and is potentially suitable for retrieval of the aerosol optical depth (AOD). The VIIRS Environmental Data Record data (VIIRS_EDR) is produced operationally by NOAA, and is based on the MODIS atmospheric correction algorithm. The “MODIS-like” VIIRS data (VIIRS_ML) are being produced experimentally at NASA, from a version of the “dark-target” algorithm that is applied to MODIS. In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over the North China Plain (NCP) are evaluated using the ground-based CE318 Sunphotometer (CE318) measurements during 2 May 2012 – 31 March 2014 at three sites. These sites represent three different surface types: urban (Beijing), suburban (XiangHe) and rural (Xinglong). Firstly, we evaluate the retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias (MB) of 0.04-0.06 and the correlation of 0.83-0.86, with the largest MB (0.10-0.15) observed in Beijing. In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13-0.14 and a higher correlation (0.93-0.94) with CE318 AOD. Secondly, we evaluate the aerosol model types assumed by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant model types during the evaluation period. The overall accuracy rate of the aerosol model used in VIIRS_ML over NCP three sites (0.48) is higher than that of VIIRS_EDR (0.27). The differences in Single Scattering Albedo (SSA) at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015, but high seasonal differences are found especially over the Xinglong site. The values of SSA from VIIRS_EDR are higher than that observed by CE318 over all sites and all assumed aerosol modes, with a positive bias of 0.02-0.04 for fine mode, 0.06-0.12 for coarse mode and 0.03-0.05 for bi-mode at 440nm. The overestimation of SSA but positive AOD MB of VIIRS_EDR indicate that other factors (e.g. surface reflectance characterization or cloud contamination) are important sources of error in the VIIRS_EDR algorithm, and their effects on aerosol retrievals may override the effects from non-ideality in these aerosol models

    XBAER-derived aerosol optical thickness from OLCI/Sentinel-3 observation

    Get PDF

    Aerosols Monitored by Satellite Remote Sensing

    Get PDF
    Aerosols, small particles suspended in the atmosphere, affect the air quality and climate change. Their distributions can be monitored by satellite remote sensing. Many images of aerosol properties are available from websites as the by-products of the atmospheric correction of the satellite data. Their qualities depend on the accuracy of the atmospheric correction algorithms. The approaches of the atmospheric correction for land and ocean are different due to the large difference of the ground reflectance between land and ocean. A unified atmospheric correction (UAC) approach is developed to improve the accuracy of aerosol products over land, similar to those over ocean. This approach is developed to estimate the aerosol scattering reflectance from satellite data based on a lookup table (LUT) of in situ measured ground reflectance. The results show that the aerosol scattering reflectance can be completely separated from the satellite measured radiance over turbid waters and lands. The accuracy is validated with the mean relative errors of 22.1%. The vertical structures of the aerosols provide a new insight into the role of aerosols in regulating Earth\u27s weather, climate, and air quality
    corecore