2,370 research outputs found

    Classifying sequences by the optimized dissimilarity space embedding approach: a case study on the solubility analysis of the E. coli proteome

    Full text link
    We evaluate a version of the recently-proposed classification system named Optimized Dissimilarity Space Embedding (ODSE) that operates in the input space of sequences of generic objects. The ODSE system has been originally presented as a classification system for patterns represented as labeled graphs. However, since ODSE is founded on the dissimilarity space representation of the input data, the classifier can be easily adapted to any input domain where it is possible to define a meaningful dissimilarity measure. Here we demonstrate the effectiveness of the ODSE classifier for sequences by considering an application dealing with the recognition of the solubility degree of the Escherichia coli proteome. Solubility, or analogously aggregation propensity, is an important property of protein molecules, which is intimately related to the mechanisms underlying the chemico-physical process of folding. Each protein of our dataset is initially associated with a solubility degree and it is represented as a sequence of symbols, denoting the 20 amino acid residues. The herein obtained computational results, which we stress that have been achieved with no context-dependent tuning of the ODSE system, confirm the validity and generality of the ODSE-based approach for structured data classification.Comment: 10 pages, 49 reference

    Sketch-a-Net that Beats Humans

    Full text link
    We propose a multi-scale multi-channel deep neural network framework that, for the first time, yields sketch recognition performance surpassing that of humans. Our superior performance is a result of explicitly embedding the unique characteristics of sketches in our model: (i) a network architecture designed for sketch rather than natural photo statistics, (ii) a multi-channel generalisation that encodes sequential ordering in the sketching process, and (iii) a multi-scale network ensemble with joint Bayesian fusion that accounts for the different levels of abstraction exhibited in free-hand sketches. We show that state-of-the-art deep networks specifically engineered for photos of natural objects fail to perform well on sketch recognition, regardless whether they are trained using photo or sketch. Our network on the other hand not only delivers the best performance on the largest human sketch dataset to date, but also is small in size making efficient training possible using just CPUs.Comment: Accepted to BMVC 2015 (oral

    Handwritten word-image retrieval with synthesized typed queries

    Get PDF
    We propose a new method for handwritten word-spotting which does not require prior training or gathering examples for querying. More precisely, a model is trained “on the fly ” with images rendered from the searched words in one or multiple computer fonts. To reduce the mismatch between the typed-text prototypes and the candidate handwritten images, we make use of: (i) local gradient histogram (LGH) features, which were shown to model word shapes robustly, and (ii) semi-continuous hidden Markov models (SC-HMM), in which the typed-text models are constrained to a “vocabulary ” of handwritten shapes, thus learning a link between both types of data. Experiments show that the proposed method is effective in retrieving handwritten words, and the comparison to alternative methods reveals that the contribution of both the LGH features and the SC-HMM is crucial. To the best of the authors ’ knowledge, this is the first work to address this issue in a non-trivial manner

    Towards Practicality of Sketch-Based Visual Understanding

    Full text link
    Sketches have been used to conceptualise and depict visual objects from pre-historic times. Sketch research has flourished in the past decade, particularly with the proliferation of touchscreen devices. Much of the utilisation of sketch has been anchored around the fact that it can be used to delineate visual concepts universally irrespective of age, race, language, or demography. The fine-grained interactive nature of sketches facilitates the application of sketches to various visual understanding tasks, like image retrieval, image-generation or editing, segmentation, 3D-shape modelling etc. However, sketches are highly abstract and subjective based on the perception of individuals. Although most agree that sketches provide fine-grained control to the user to depict a visual object, many consider sketching a tedious process due to their limited sketching skills compared to other query/support modalities like text/tags. Furthermore, collecting fine-grained sketch-photo association is a significant bottleneck to commercialising sketch applications. Therefore, this thesis aims to progress sketch-based visual understanding towards more practicality.Comment: PhD thesis successfully defended by Ayan Kumar Bhunia, Supervisor: Prof. Yi-Zhe Song, Thesis Examiners: Prof Stella Yu and Prof Adrian Hilto

    Statistical Deformation Model for Handwritten Character Recognition

    Get PDF
    • 

    corecore