223 research outputs found

    Retrieval of forest stem volume using VHF SAR

    Get PDF
    The ability to retrieve forest stem volume using CARABAS (coherent all radio band sensing) SAR images (28–60 MHz) has been investigated. The test site is a deciduous mixed forest on the island of Öland in southern Sweden. The images have been radiometrically calibrated using an array of horizontal dipoles. The images exhibit a clear discrimination between the forest and open fields. The results show that the dynamic range of the backscattering coefficient among the forest stands is higher than what has been found with conventional SAR using microwave frequencies. The backscatter increases with increasing radar frequency. This work shows an advantage compared to higher frequencies for stem volume estimation in dense forests

    Estimation of Forest Biomass and Faraday Rotation using Ultra High Frequency Synthetic Aperture Radar

    Get PDF
    Synthetic Aperture Radar (SAR) data in the Ultra High Frequency (UHF; 300 MHz – 3 GHz)) band have been shown to be strongly dependent of forest biomass, which is a poorly estimated variable in the global carbon cycle. In this thesis UHF-band SAR data from the fairly flat hemiboreal test site Remningstorp in southern Sweden were analysed. The data were collected on several occasions with different moisture conditions during the spring of 2007. Regression models for biomass estimation on stand level (0.5-9 ha) were developed for each date on which SAR data were acquired. For L-band (centre frequency 1.3 GHz) the best estimation model was based on HV-polarized backscatter, giving a root mean squared error (rmse) between 31% and 46% of the mean biomass. For P-band (centre frequency 340 MHz), regression models including HH, HV or HH and HV backscatter gave an rmse between 18% and 27%. Little or no saturation effects were observed up to 290 t/ha for P-band. A model based on physical-optics has been developed and was used to predict HH-polarized SAR data with frequencies from 20 MHz to 500 MHz from a set of vertical trunks standing on an undulating ground surface. The model shows that ground topography is a critical issue in SAR imaging for these frequencies. A regression model for biomass estimation which includes a correction for ground slope was developed using multi-polarized P-band SAR data from Remningstorp as well as from the boreal test site Krycklan in northern Sweden. The latter test site has pronounced topographic variability. It was shown that the model was able to partly compensate for moisture variability, and that the model gave an rmse of 22-33% when trained using data from Krycklan and evaluated using data from Remningstorp. Regression modelling based on P-band backscatter was also used to estimate biomass change using data acquired in Remningstorp during the spring 2007 and during the fall 2010. The results show that biomass change can be measured with an rmse of about 15% or 20 tons/ha. This suggests that not only deforestation, but also forest growth and degradation (e.g. thinning) can be measured using P-band SAR data. The thesis also includes result on Faraday rotation, which is an ionospheric effect which can have a significant impact on spaceborne UHF-band SAR images. Faraday rotation angles are estimated in spaceborne L-band SAR data. Estimates based on distributed targets and calibration targets with high signal to clutter ratios are found to be in very good agreement. Moreover, a strong correlation with independent measurements of Total Electron Content is found, further validating the estimates

    Regression-Based Retrieval of Boreal Forest Biomass in Sloping Terrain using P-band SAR Backscatter Intensity Data

    Get PDF
    A new biomass retrieval model for boreal forest using polarimetric P-band synthetic aperture radar (SAR) backscatter is presented. The model is based on two main SAR quantities: the HV backscatter and the HH/VV backscatter ratio. It also includes a topographic correction based on the ground slope. The model is developed from analysis of stand-wise data from two airborne P-band SAR campaigns: BioSAR 2007 (test site: Remningstorp, southern Sweden, biomass range: 10-287 tons/ha, slope range: 0-4 degrees) and BioSAR 2008 (test site: Krycklan, northern Sweden, biomass range: 8-257 tons/ha, slope range: 0-19 degrees). The new model is compared to five other models in a set of tests to evaluate its performance in different conditions. All models are first tested on data sets from Remningstorp with different moisture conditions, acquired during three periods in the spring of 2007. Thereafter, the models are tested in topographic terrain using SAR data acquired for different flight headings in Krycklan. The models are also evaluated across sites, i.e., training on one site followed by validation on the other site. Using the new model with parameters estimated on Krycklan data, biomass in Remningstorp is retrieved with RMSE of 40-59 tons/ha, or 22-33% of the mean biomass, which is lower compared to the other models. In the inverse scenario, the examined site is not well represented in the training data set, and the results are therefore not conclusive

    Topographic Correction for Biomass Retrieval from P-band SAR Data in Boreal Forests

    Get PDF
    The influence of the ground slope on radar backscatter has been proven to be greater for lower radar frequencies due to deeper canopy penetration. In this study, multiple heading, Pband SAR data of boreal forest in Sweden was used to find a model for topographic correction for improved biomass retrieval. Eleven models were tested and the best model was selected. The selected model was then used for biomass retrieval. Even by means of the most simplified approach, forest biomass could be established with a root-mean-square error of approximately 50 t/ha for HV and 66 t/ha for HH

    Estimation of biophysical parameters in boreal forests from ERS and JERS SAR interferometry

    Get PDF
    The thesis describes investigations concerning the evaluation of ERS and JERS SAR images and repeat-pass interferometric SAR images for the retrieval of biophysical parameters in boreal forests. The availability of extensive data sets of images over several test sites located in Sweden, Finland and Siberia has allowed analysis of temporal dynamics of ERS and JERS backscatter and coherence, and of ERS interferometric phase. Modelling of backscatter, coherence and InSAR phase has been performed by means of the Water Cloud Model (WCM) and the Interferometric Water Cloud Model (IWCM); sensitivity analysis and implications for the retrieval of forest biophysical parameters have been thoroughly discussed. Model inversion has been carried out for stem volume retrieval using ERS coherence, ERS backscatter and JERS backscatter, whereas for tree height estimation the ERS interferometric phase has been used. Multi-temporal combination of ERS coherence images, and to a lesser extent of JERS backscatter images, can provide stem volume estimates comparable to stand-wise ground-based measurements. Since the information content of the interferometric phase is strongly degraded by phase noise and uncorrected atmospheric artefacts, the retrieved tree height shows large errors

    Radar backscatter modelling of forests using a macroecological approach

    Get PDF
    This thesis provides a new explanation for the behaviour of radar backscatter of forests using vegetation structure models from the field of macroecology. The forests modelled in this work are produced using allometry-based ecological models with backscatter derived from the parameterisation of a radiative transfer model. This work is produced as a series of papers, each portraying the importance of macroecology in defining the forest radar response. Each contribution does so by incorporating structural and dynamic effects of forest growth using one of two allometric models to expose variations in backscatter as a response to vertical and horizontal forest profiles. The major findings of these studies concern the origin of backscatter saturation effects from forest SAR surveys. In each work the importance of transition from Rayleigh to Optical scattering, combined with the scaling effects of forest structure, is emphasised. These findings are administered through evidence including the transition’s emergence as the region of dominant backscatter in a vertical profile (according to a dominant canopy scattering layer), also through the existence of a two trend backscatter relationship with volume in the shape of the typical “saturation curve” (in the absence of additional attenuating factors). The importance of scattering regime change is also demonstrated through the relationships with volume, basal area and thinning. This work’s findings are reinforced by the examination of the relationships between forest height and volume, as collective values, providing evidence to suggest the non-uniqueness of volume-toheight relationships. Each of the studies refer to growing forest communities not single trees, so that unlike typical studies of radar remote sensing of forests the impact of the macroecological structural aspects are more explicit. This study emphasises the importance of the overall forest structure in producing SAR backscatter and how backscatter is not solely influenced by electrical properties of scatteres or the singular aspects of a tree but also by the collective forest parameters defining a dynamically changing forest

    A location scale based CFAR detection framework for FOPEN SAR images

    Get PDF
    The problem of target detection in a complex clutter environment, with Constant False Alarm Ratio (CFAR), is addressed in this paper. In particular an algorithm for CFAR target detection is applied to the context of FOliage PENetrating (FOPEN) Synthetic Aperture Radar (SAR) imaging. The extreme value distributions family is used to model the data and exploiting the location-scale property of this family of distributions, a multi-model CFAR algorithm is derived. Performance analysis on real data confirms the capability of the developed framework to control the false alarm probability

    Temporal Characteristics of Boreal Forest Radar Measurements

    Get PDF
    Radar observations of forests are sensitive to seasonal changes, meteorological variables and variations in soil and tree water content. These phenomena cause temporal variations in radar measurements, limiting the accuracy of tree height and biomass estimates using radar data. The temporal characteristics of radar measurements of forests, especially boreal forests, are not well understood. To fill this knowledge gap, a tower-based radar experiment was established for studying temporal variations in radar measurements of a boreal forest site in southern Sweden. The work in this thesis involves the design and implementation of the experiment and the analysis of data acquired. The instrument allowed radar signatures from the forest to be monitored over timescales ranging from less than a second to years. A purpose-built, 50 m high tower was equipped with 30 antennas for tomographic imaging at microwave frequencies of P-band (420-450 MHz), L-band (1240-1375 MHz) and C-band (5250-5570 MHz) for multiple polarisation combinations. Parallel measurements using a 20-port vector network analyser resulted in significantly shorter measurement times and better tomographic image quality than previous tower-based radars. A new method was developed for suppressing mutual antenna coupling without affecting the range resolution. Algorithms were developed for compensating for phase errors using an array radar and for correcting for pixel-variant impulse responses in tomographic images. Time series results showed large freeze/thaw backscatter variations due to freezing moisture in trees. P-band canopy backscatter variations of up to 10 dB occurred near instantaneously as the air temperature crossed 0⁰C, with ground backscatter responding over longer timescales. During nonfrozen conditions, the canopy backscatter was very stable with time. Evidence of backscatter variations due to tree water content were observed during hot summer periods only. A high vapour pressure deficit and strong winds increased the rate of transpiration fast enough to reduce the tree water content, which was visible as 0.5-2 dB backscatter drops during the day. Ground backscatter for cross-polarised observations increased during strong winds due to bending tree stems. Significant temporal decorrelation was only seen at P-band during freezing, thawing and strong winds. Suitable conditions for repeat-pass L-band interferometry were only seen during the summer. C-band temporal coherence was high over timescales of seconds and occasionally for several hours for night-time observations during the summer. Decorrelation coinciding with high transpiration rates was observed at L- and C-band, suggesting sensitivity to tree water dynamics.The observations from this experiment are important for understanding, modelling and mitigating temporal variations in radar observables in forest parameter estimation algorithms. The results also are also useful in the design of spaceborne synthetic aperture radar missions with interferometric and tomographic capabilities. The results motivate the implementation of single-pass interferometric synthetic aperture radars for forest applications at P-, L- and C-band

    BIOSAR 2010 - A SAR campaign in support to the BIOMASS mission

    Get PDF
    The ESA funded campaign BioSAR 2010 was carried out at the forestry test site Remningstorp in southern Sweden, in support to the BIOMASS satellite mission under study. Fully polarimetric SAR data were successfully acquired at L- and P-band using ONERA's multi-frequency system SETHI. In addition with other data types gathered, e.g. LiDAR and in-situ measurements, the compiled data set will be used for analyses and comparisons with biomass estimation results obtained at the same test site in the campaign BioSAR 2007, in which DLR's E-SAR made the SAR imaging. Detection of forest changes, robustness of biomass retrieval algorithms and long-term P-band coherence will be in focus as well as cross-validations between the two SAR sensors
    corecore