48 research outputs found

    Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review

    Get PDF
    The coastal zone offers among the world’s most productive and valuable ecosystems and is experiencing increasing pressure from anthropogenic impacts: human settlements, agriculture, aquaculture, trade, industrial activities, oil and gas exploitation and tourism. Earth observation has great capability to deliver valuable data at the local, regional and global scales and can support the assessment and monitoring of land‐ and water‐related applications in coastal zones. Compared to optical satellites, cloud‐cover does not limit the timeliness of data acquisition with spaceborne Synthetic Aperture Radar (SAR) sensors, which have all‐weather, day and night capabilities. Hence, active radar systems demonstrate great potential for continuous mapping and monitoring of coastal regions, particularly in cloud‐prone tropical and sub‐tropical climates. The canopy penetration capability with long radar wavelength enables L‐band SAR data to be used for coastal terrestrial environments and has been widely applied and investigated for the following geoscientific topics: mapping and monitoring of flooded vegetation and inundated areas; the retrieval of aboveground biomass; and the estimation of soil moisture. Human activities, global population growth, urban sprawl and climate change‐induced impacts are leading to increased pressure on coastal ecosystems causing land degradation, deforestation and land use change. This review presents a comprehensive overview of existing research articles that apply spaceborne L‐band SAR data for geoscientific analyses that are relevant for coastal land applications

    ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications

    Get PDF
    Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research

    Wetland mapping and monitoring using polarimetric and interferometric synthetic aperture radar (SAR) data and tools

    Get PDF
    Wetlands are home to a great variety of flora and fauna species and provide several unique environmental functions, such as controlling floods, improving water-quality, supporting wildlife habitat, and shoreline stabilization. Detailed information on spatial distribution of wetland classes is crucial for sustainable management and resource assessment. Furthermore, hydrological monitoring of wetlands is also important for maintaining and preserving the habitat of various plant and animal species. This thesis investigates the existing knowledge and technological challenges associated with wetland mapping and monitoring and evaluates the limitations of the methodologies that have been developed to date. The study also proposes new methods to improve the characterization of these productive ecosystems using advanced remote sensing (RS) tools and data. Specifically, a comprehensive literature review on wetland monitoring using Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) techniques is provided. The application of the InSAR technique for wetland mapping provides the following advantages: (i) the high sensitivity of interferometric coherence to land cover changes is taken into account and (ii) the exploitation of interferometric coherence for wetland classification further enhances the discrimination between similar wetland classes. A statistical analysis of the interferometric coherence and SAR backscattering variation of Canadian wetlands, which are ignored in the literature, is carried out using multi-temporal, multi-frequency, and multi-polarization SAR data. The study also examines the capability of compact polarimetry (CP) SAR data, which will be collected by the upcoming RADARSAT Constellation Mission (RCM) and will constitute the main source of SAR observation in Canada, for wetland mapping. The research in this dissertation proposes a methodology for wetland classification using the synergistic use of intensity, polarimetry, and interferometry features using a novel classification framework. Finally, this work introduces a novel model based on the deep convolutional neural network (CNN) for wetland classification that can be trained in an end-to-end scheme and is specifically designed for the classification of wetland complexes using polarimetric SAR (PolSAR) imagery. The results of the proposed methods are promising and will significantly contribute to the ongoing efforts of conservation strategies for wetlands and monitoring changes. The approaches presented in this thesis serve as frameworks, progressing towards an operational methodology for mapping wetland complexes in Canada, as well as other wetlands worldwide with similar ecological characteristics

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten LandflĂ€che in der nördlichen HemisphĂ€re. Es ist ein wichtiges Element der KryosphĂ€re und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der LandoberflĂ€che und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die OberflĂ€chenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frĂŒhen 1980er Jahren gestiegen. Die durchschnittliche ErwĂ€rmung nördlich von 60° N betrĂ€gt 1-2°C. In-situ-Messungen sind essentiell fĂŒr das VerstĂ€ndnis der physischen Prozesse im PermafrostgelĂ€nde. Es gibt jedoch mehrere EinschrĂ€nkungen, die von Schwierigkeiten beim Bohren bis hin zur ReprĂ€sentativitĂ€t begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergĂ€nzen und punktuelle Beobachtungen auf einen breiteren rĂ€umlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-DatensĂ€tzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewĂ€hlt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stĂ€rksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) DatensĂ€tze haben Vorteile fĂŒr das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der UnabhĂ€ngigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-DatensĂ€tzen fĂŒr Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die VariabilitĂ€t der Auftautiefe der aktiven Schicht ist eine direkte Indikation der VerĂ€nderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingefĂŒhrt wird, eingesetzt. Die D-InSAR-Technik wurde fĂŒr Kartierung der LandoberflĂ€chendeformation ĂŒber große FlĂ€chen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die FĂ€higkeit, tau- und gefrierprozessbedingte Bodenbewegungen ĂŒber Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und WertschĂ€tzung der D-InSAR-Anwendung bis heute hauptsĂ€chlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren fĂŒr D-InSAR-Anwendung verursacht. Das diskontinuierliche PermafrostgelĂ€nde wurde nur weniger berĂŒcksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen fĂŒr D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die PrĂ€senz des Permafrosts hin, wobei deren VerĂ€nderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X RĂŒckstreuungsintensitĂ€t und interferometrische KohĂ€renzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-DatensĂ€tzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten ĂŒbertragen werden. Eine vorherrschende VerĂ€nderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch VerĂ€nderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke ĂŒber den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollstĂ€ndig gefroren sein, was zum geerdeten Eis fĂŒhrt, wĂ€hrend die Eisdecke ĂŒber den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flĂŒssiges Wasser unter der Eisdecke bestehen, was zum Treibeis fĂŒhrt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flĂŒssige Wasser zusĂ€tzliche WĂ€rme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren VerstĂ€rkung des Permafrostauftauen beitrĂ€gt. Basiert auf den Charakter, dass das flĂŒssige Wasser eine bemerkenswert hohe DielektrizitĂ€tskonstante besitzt, wĂ€hrend reines Eis einen niedrigen Wert hat, wurden die SAR DatensĂ€tzen zur Erkennung des Wintereisdeckenregimes verwendet. ZunĂ€chst wurden Schemen in der rĂ€umlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die ZusammenhĂ€nge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschĂ€tzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflĂ€chen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erlĂ€utern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die rĂ€umliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten LandflĂ€che in der nördlichen HemisphĂ€re. Es ist ein wichtiges Element der KryosphĂ€re und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der LandoberflĂ€che und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die OberflĂ€chenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frĂŒhen 1980er Jahren gestiegen. Die durchschnittliche ErwĂ€rmung nördlich von 60° N betrĂ€gt 1-2°C. In-situ-Messungen sind essentiell fĂŒr das VerstĂ€ndnis der physischen Prozesse im PermafrostgelĂ€nde. Es gibt jedoch mehrere EinschrĂ€nkungen, die von Schwierigkeiten beim Bohren bis hin zur ReprĂ€sentativitĂ€t begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergĂ€nzen und punktuelle Beobachtungen auf einen breiteren rĂ€umlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-DatensĂ€tzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewĂ€hlt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stĂ€rksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) DatensĂ€tze haben Vorteile fĂŒr das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der UnabhĂ€ngigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-DatensĂ€tzen fĂŒr Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die VariabilitĂ€t der Auftautiefe der aktiven Schicht ist eine direkte Indikation der VerĂ€nderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingefĂŒhrt wird, eingesetzt. Die D-InSAR-Technik wurde fĂŒr Kartierung der LandoberflĂ€chendeformation ĂŒber große FlĂ€chen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die FĂ€higkeit, tau- und gefrierprozessbedingte Bodenbewegungen ĂŒber Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und WertschĂ€tzung der D-InSAR-Anwendung bis heute hauptsĂ€chlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren fĂŒr D-InSAR-Anwendung verursacht. Das diskontinuierliche PermafrostgelĂ€nde wurde nur weniger berĂŒcksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen fĂŒr D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die PrĂ€senz des Permafrosts hin, wobei deren VerĂ€nderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X RĂŒckstreuungsintensitĂ€t und interferometrische KohĂ€renzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-DatensĂ€tzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten ĂŒbertragen werden. Eine vorherrschende VerĂ€nderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch VerĂ€nderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke ĂŒber den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollstĂ€ndig gefroren sein, was zum geerdeten Eis fĂŒhrt, wĂ€hrend die Eisdecke ĂŒber den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flĂŒssiges Wasser unter der Eisdecke bestehen, was zum Treibeis fĂŒhrt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flĂŒssige Wasser zusĂ€tzliche WĂ€rme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren VerstĂ€rkung des Permafrostauftauen beitrĂ€gt. Basiert auf den Charakter, dass das flĂŒssige Wasser eine bemerkenswert hohe DielektrizitĂ€tskonstante besitzt, wĂ€hrend reines Eis einen niedrigen Wert hat, wurden die SAR DatensĂ€tzen zur Erkennung des Wintereisdeckenregimes verwendet. ZunĂ€chst wurden Schemen in der rĂ€umlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die ZusammenhĂ€nge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschĂ€tzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflĂ€chen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erlĂ€utern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die rĂ€umliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    TerraSAR-X and Wetlands: A Review

    Get PDF
    Since its launch in 2007, TerraSAR-X observations have been widely used in a broad range of scientific applications. Particularly in wetland research, TerraSAR-X\u27s shortwave X-band synthetic aperture radar (SAR) possesses unique capabilities, such as high spatial and temporal resolution, for delineating and characterizing the inherent spatially and temporally complex and heterogeneous structure of wetland ecosystems and their dynamics. As transitional areas, wetlands comprise characteristics of both terrestrial and aquatic features, forming a large diversity of wetland types. This study reviews all published articles incorporating TerraSAR-X information into wetland research to provide a comprehensive study of how this sensor has been used with regard to polarization, and the function of the data, time-series analyses, or the assessment of specific wetland ecosystem types. What is evident throughout this literature review is the synergistic fusion of multi-frequency and multi-polarization SAR sensors, sometimes optical sensors, in almost all investigated studies to attain improved wetland classification results. Due to the short revisiting time of the TerraSAR-X sensor, it is possible to compute dense SAR time-series, allowing for a more precise observation of the seasonality in dynamic wetland areas as demonstrated in many of the reviewed studies

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Potential of Spaceborne X & L-Band SAR-Data for Soil Moisture Mapping Using GIS and its Application to Hydrological Modelling: the Example of Gottleuba Catchment, Saxony / Germany

    Get PDF
    Hydrological modelling is a powerful tool for hydrologists and engineers involved in the planning and development of integrated approach for the management of water resources. With the recent advent of computational power and the growing availability of spatial data, RS and GIS technologies can augment to a great extent the conventional methods used in rainfall runoff studies; it is possible to accurately describe watershed characteristics in particularly when determining runoff response to rainfall input. The main objective of this study is to apply the potential of spaceborne SAR data for soil moisture retrieval in order to improve the spatial input parameters required for hydrological modelling. For the spatial database creation, high resolution 2 m aerial laser scanning Digital Terrain Model (DTM), soil map, and landuse map were used. Rainfall records were transformed into a runoff through hydrological parameterisation of the watershed and the river network using HEC-HMS software for rainfall runoff simulation. The Soil Conservation Services Curve Number (SCS-CN) and Soil Moisture Accounting (SMA) loss methods were selected to calculate the infiltration losses. In microwave remote sensing, the study of how the microwave interacts with the earth terrain has always been interesting in interpreting the satellite SAR images. In this research soil moisture was derived from two different types of Spaceborne SAR data; TerraSAR-X and ALOS PALSAR (L band). The developed integrated hydrological model was applied to the test site of the Gottleuba Catchment area which covers approximately 400 sqkm, located south of Pirna (Saxony, Germany). To validate the model historical precipitation data of the past ten years were performed. The validated model was further optimized using the extracted soil moisture from SAR data. The simulation results showed a reasonable match between the simulated and the observed hydrographs. Quantitatively the study concluded that based on SAR data, the model could be used as an expeditious tool of soil moisture mapping which required for hydrological modelling

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel
    corecore