1,234 research outputs found

    Remote Sensing of Aerosol Over Vegetation Cover Based on Pixel Level Multi-Wavelength Polarized Measurements

    Get PDF
    Often the aerosol contribution is small compared to the surface covered vegetation. while, atmospheric scattering is much more polarized than the surface reflection. In essence, the polarized light is much more sensitive to atmospheric scattering than to reflection by vegetative cover surface. Using polarized information could solve the inverse problem of separating the surface and atmospheric scattering contributions. This paper presents retrieval of aerosols properties from multi-wavelength polarized measurements. The results suggest that it is feasible and possibility for discriminating the aerosol contribution from the surface in the aerosol retrieval procedure using multidirectional and multi-wavelength polarization measurements. Keywords: Aerosol, remote sensing, polarized measurements, short wave infrare

    Modeling Atmosphere-Ocean Radiative Transfer: A PACE Mission Perspective

    Get PDF
    The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth's sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates

    Modeling Atmosphere-Ocean Radiative Transfer: A PACE Mission Perspective

    Get PDF
    The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth’s sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates

    Modeling atmosphere-ocean radiative transfer: A PACE mission perspective

    Get PDF
    The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth’s sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates

    Studies of global cloud field using measurements of GOME, SCIAMACHY and GOME-2

    Get PDF
    Tropospheric clouds are main players in the Earth climate system. Characterization of long-term global and regional cloud properties aims to support trace-gases retrieval, radiative budget assessment, and analysis of interactions with particles in the atmosphere. The information needed for the determination of cloud properties can be optimally obtained with satellite remote sensing systems. This is because the amount of reflected solar light depends both on macro- and micro-physical characteristics of clouds. At the time of writing, the spaceborne nadir-viewing Global Ozone Monitoring Experiment (GOME), together with the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and GOME-2, make available a unique record of almost 17 years (June 1996 throughout May 2012) of global top-of-atmosphere (TOA) reflectances and form the observational basis of this work. They probe the atmosphere in the ultraviolet, visible and infrared regions of the electromagnetic spectrum. Specifically, in order to infer cloud properties such as optical thickness (COT), spherical albedo (CA), cloud base (CBH) and cloud top (CTH) height, TOA reflectances have been selected inside and around the strong absorption band of molecular oxygen in the wavelength range at 758-772 nm (the O2 A-band). The retrieval is accomplished using the Semi-Analytical CloUd Retrieval Algorithm (SACURA). The physical framework relies on the asymptotic parameterizations of radiative transfer. The generated record has been throughly verified against synthetic datasets as function of cloud and surface parameters, sensing geometries, and instrumental specifications and validated against ground-based retrievals. The error budget analysis shows that SACURA retrieves CTH with an average accuracy of ±400 m, COT within ±20% (given that COT > 5) and places CTH closer to ground-based radar-derived CTH, as compared to independent satellite-based retrievals. In the considered time period the global average CTH is 5.2±3.0 km, for a corresponding average COT of 20.5±16.1 and CA of 0.62±0.11. Using linear least-squares techniques, global trend in deseasonalized CTH has been found to be -1.78±2.14 m * year-1 in the latitude belt ±60°, with diverging tendency over land ( 0.27±3.2 m * year-1) and water (-2.51±2.8 m * year-1) masses. The El Nino-Southern Oscillation (ENSO), observed through CTH and cloud fraction (CF) values over the Pacific Ocean, pulls clouds to lower altitudes. It is argued that ENSO must be removed for trend analysis. The global ENSO-cleaned trend in CTH amounts to -0.49±2.22 m * year-1. At a global scale, no explicit patterns of statistically significant trends (at 95% confidence level, estimated with bootstrap resampling technique) have been found, which are representative of peculiar natural climate variability. One exception is the Sahara region, which exhibits the strongest upward trend in CTH, sustained by an increasing trend in water vapor. Indeed, the representativeness of every trend is affected by the record length under study. 17 years of cloud data still might not be enough to provide any decisive answer to current open questions involving clouds. The algorithm used in this work can be applied to measurements provided by future planned Earth's observation missions. In this way, the existing cloud record will be extended and attribution of cloud property changes to natural or human causes and assessment of cloud feedback sign within the climate system can be investigated

    PACE Technical Report Series, Volume 3: Polarimetry in the PACE Mission: Science Team Consensus Document

    Get PDF
    The first goal of PACE mission science is to open new vistas in aquatic bio geochemistry by measuring non-chlorophyll pigments, separate chlorophyll and colored dissolved organic matter (CDOM) and characterize phytoplankton taxonomy. PACE science will follow aquatic biochemistry into ecosystems in coastal regions, estuaries, tidal wetlands and lakes. PACE's second science goal is to extend aerosoland cloud data-records begun by the passive EOS-era instruments, as an aerosol- cloud-climate continuation mission. Besides PACE, NASA has no plans for multi-angle radiometry to continue the MISR record nor for multi-angle polarimetry to continue the PARASOL record. A multi-angle polarimeter on PACE will reduce risk towards meeting the first goal and enable the realization of the second

    PACE Technical Report Series, Volume 4: Cloud Retrievals in the PACE Mission: PACE Science Team Consensus Document

    Get PDF
    Earth is a complex dynamical system exhibiting continuous change in its atmosphere, ocean,and surface elements. Nearly all (99.97%) of the energy driving these systems is linked to the Sun. Measurements of reflected sunlight contain a unique signature of wavelength-specific scattering and absorption interactions occurring between incoming solar energy and atmospheric (molecules, aerosols,clouds) and surface features Clouds can affect significantly both shortwave and long wave radiation, depending on altitude/vertical structure, thermodynamic phase, and optical properties. Low, warm, and optically thick clouds predominantly have a cooling effect, while high, cold, optically thin clouds can cause warming by absorbing warmer radiation emitted from the surface and lower atmosphere.When the net difference between outgoing and incoming solar radiation is matched by the net infrared radiation emitted to space, the Earth's climate is in radiative balance. While radiative forcing components (GHGs, aerosols - direct and indirect) contribute to a net radiative imbalance, climate sensitivity is ultimately determined by the contribution of various system feed backs. The role of cloud feedback in a warming climate is currently the largest inter-model uncertainty in climate sensitivity and therefore in climate prediction [Bony and Dufresne 2005]. A comprehensive understanding of current cloud propertiesand dynamic/microphysical processes requires a global perspective from satellites

    Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission

    Get PDF
    Instruments dedicated to aerosol monitoring are recently available and the POLDER (POLarization and Directionality of the Earth's Reflectances) instrument on board the PARASOL (Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) mission is one of them. By measuring the spectral, angular and polarization properties of the radiance at the top of the atmosphere, in coordination with the other A-Train instruments, PARASOL provides the aerosol optical depths (AOD) as well as several optical and microphysical aerosol properties. The instrument, the inversion schemes and the list of aerosol parameters are described. Examples of retrieved aerosol parameters are provided as well as innovative approaches and further inversion techniques

    The Impact of Lidar Detection Sensitivity on Assessing Aerosol Direct Radiative Effects

    Get PDF
    Spaceborne lidar observations have great potential to provide accurate global estimates of the aerosol direct radiative effect (DRE) in both clear and cloudy conditions. However, comparisons between observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) and multiple years of Atmospheric Radiation Measurement (ARM) programs ground-based Raman lidars (RL) show that CALIPSO does not detect all radiatively significant aerosol, i.e. aerosol that directly modifies the Earths radiation budget. We estimated that using CALIPSO observations results in an underestimate of the magnitude of the global mean aerosol DRE by up to 54%. The ARM RL datasets along with NASA Langley airborne high spectral resolution lidar (HSRL) data from multiple field campaigns are used to compute the detection sensitivity required to accurately resolve the aerosol DRE. This shows that a lidar with a backscatter coefficient detection sensitivity of about 12x10(exp -4)km(exp -1)sr(exp -1) at 532nm would resolve all the aerosol needed to derive the DRE to within 1%

    Evaluating The Impact Of Above-Cloud Aerosols On Cloud Optical Depth Retrievals From Modis

    Get PDF
    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10–20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above–cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS shortwave infrared COD products
    • …
    corecore