2,097 research outputs found

    RGB-D-based Action Recognition Datasets: A Survey

    Get PDF
    Human action recognition from RGB-D (Red, Green, Blue and Depth) data has attracted increasing attention since the first work reported in 2010. Over this period, many benchmark datasets have been created to facilitate the development and evaluation of new algorithms. This raises the question of which dataset to select and how to use it in providing a fair and objective comparative evaluation against state-of-the-art methods. To address this issue, this paper provides a comprehensive review of the most commonly used action recognition related RGB-D video datasets, including 27 single-view datasets, 10 multi-view datasets, and 7 multi-person datasets. The detailed information and analysis of these datasets is a useful resource in guiding insightful selection of datasets for future research. In addition, the issues with current algorithm evaluation vis-\'{a}-vis limitations of the available datasets and evaluation protocols are also highlighted; resulting in a number of recommendations for collection of new datasets and use of evaluation protocols

    RGBD Datasets: Past, Present and Future

    Full text link
    Since the launch of the Microsoft Kinect, scores of RGBD datasets have been released. These have propelled advances in areas from reconstruction to gesture recognition. In this paper we explore the field, reviewing datasets across eight categories: semantics, object pose estimation, camera tracking, scene reconstruction, object tracking, human actions, faces and identification. By extracting relevant information in each category we help researchers to find appropriate data for their needs, and we consider which datasets have succeeded in driving computer vision forward and why. Finally, we examine the future of RGBD datasets. We identify key areas which are currently underexplored, and suggest that future directions may include synthetic data and dense reconstructions of static and dynamic scenes.Comment: 8 pages excluding references (CVPR style

    T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects

    Full text link
    We introduce T-LESS, a new public dataset for estimating the 6D pose, i.e. translation and rotation, of texture-less rigid objects. The dataset features thirty industry-relevant objects with no significant texture and no discriminative color or reflectance properties. The objects exhibit symmetries and mutual similarities in shape and/or size. Compared to other datasets, a unique property is that some of the objects are parts of others. The dataset includes training and test images that were captured with three synchronized sensors, specifically a structured-light and a time-of-flight RGB-D sensor and a high-resolution RGB camera. There are approximately 39K training and 10K test images from each sensor. Additionally, two types of 3D models are provided for each object, i.e. a manually created CAD model and a semi-automatically reconstructed one. Training images depict individual objects against a black background. Test images originate from twenty test scenes having varying complexity, which increases from simple scenes with several isolated objects to very challenging ones with multiple instances of several objects and with a high amount of clutter and occlusion. The images were captured from a systematically sampled view sphere around the object/scene, and are annotated with accurate ground truth 6D poses of all modeled objects. Initial evaluation results indicate that the state of the art in 6D object pose estimation has ample room for improvement, especially in difficult cases with significant occlusion. The T-LESS dataset is available online at cmp.felk.cvut.cz/t-less.Comment: WACV 201
    • …
    corecore