39,302 research outputs found

    TennisVid2Text: Fine-grained Descriptions for Domain Specific Videos

    Full text link
    Automatically describing videos has ever been fascinating. In this work, we attempt to describe videos from a specific domain - broadcast videos of lawn tennis matches. Given a video shot from a tennis match, we intend to generate a textual commentary similar to what a human expert would write on a sports website. Unlike many recent works that focus on generating short captions, we are interested in generating semantically richer descriptions. This demands a detailed low-level analysis of the video content, specially the actions and interactions among subjects. We address this by limiting our domain to the game of lawn tennis. Rich descriptions are generated by leveraging a large corpus of human created descriptions harvested from Internet. We evaluate our method on a newly created tennis video data set. Extensive analysis demonstrate that our approach addresses both semantic correctness as well as readability aspects involved in the task.Comment: BMVC 201

    Grounding Spatio-Semantic Referring Expressions for Human-Robot Interaction

    Full text link
    The human language is one of the most natural interfaces for humans to interact with robots. This paper presents a robot system that retrieves everyday objects with unconstrained natural language descriptions. A core issue for the system is semantic and spatial grounding, which is to infer objects and their spatial relationships from images and natural language expressions. We introduce a two-stage neural-network grounding pipeline that maps natural language referring expressions directly to objects in the images. The first stage uses visual descriptions in the referring expressions to generate a candidate set of relevant objects. The second stage examines all pairwise relationships between the candidates and predicts the most likely referred object according to the spatial descriptions in the referring expressions. A key feature of our system is that by leveraging a large dataset of images labeled with text descriptions, it allows unrestricted object types and natural language referring expressions. Preliminary results indicate that our system outperforms a near state-of-the-art object comprehension system on standard benchmark datasets. We also present a robot system that follows voice commands to pick and place previously unseen objects.Comment: 8 pages, 4 figures, Accepted at RSS 2017 Workshop on Spatial-Semantic Representations in Robotic

    Spatio-temporal Person Retrieval via Natural Language Queries

    Full text link
    In this paper, we address the problem of spatio-temporal person retrieval from multiple videos using a natural language query, in which we output a tube (i.e., a sequence of bounding boxes) which encloses the person described by the query. For this problem, we introduce a novel dataset consisting of videos containing people annotated with bounding boxes for each second and with five natural language descriptions. To retrieve the tube of the person described by a given natural language query, we design a model that combines methods for spatio-temporal human detection and multimodal retrieval. We conduct comprehensive experiments to compare a variety of tube and text representations and multimodal retrieval methods, and present a strong baseline in this task as well as demonstrate the efficacy of our tube representation and multimodal feature embedding technique. Finally, we demonstrate the versatility of our model by applying it to two other important tasks.Comment: Accepted to ICCV201

    DenseCap: Fully Convolutional Localization Networks for Dense Captioning

    Full text link
    We introduce the dense captioning task, which requires a computer vision system to both localize and describe salient regions in images in natural language. The dense captioning task generalizes object detection when the descriptions consist of a single word, and Image Captioning when one predicted region covers the full image. To address the localization and description task jointly we propose a Fully Convolutional Localization Network (FCLN) architecture that processes an image with a single, efficient forward pass, requires no external regions proposals, and can be trained end-to-end with a single round of optimization. The architecture is composed of a Convolutional Network, a novel dense localization layer, and Recurrent Neural Network language model that generates the label sequences. We evaluate our network on the Visual Genome dataset, which comprises 94,000 images and 4,100,000 region-grounded captions. We observe both speed and accuracy improvements over baselines based on current state of the art approaches in both generation and retrieval settings

    A Comprehensive Survey of Deep Learning for Image Captioning

    Full text link
    Generating a description of an image is called image captioning. Image captioning requires to recognize the important objects, their attributes and their relationships in an image. It also needs to generate syntactically and semantically correct sentences. Deep learning-based techniques are capable of handling the complexities and challenges of image captioning. In this survey paper, we aim to present a comprehensive review of existing deep learning-based image captioning techniques. We discuss the foundation of the techniques to analyze their performances, strengths and limitations. We also discuss the datasets and the evaluation metrics popularly used in deep learning based automatic image captioning.Comment: 36 Pages, Accepted as a Journal Paper in ACM Computing Surveys (October 2018

    Dialog-based Interactive Image Retrieval

    Full text link
    Existing methods for interactive image retrieval have demonstrated the merit of integrating user feedback, improving retrieval results. However, most current systems rely on restricted forms of user feedback, such as binary relevance responses, or feedback based on a fixed set of relative attributes, which limits their impact. In this paper, we introduce a new approach to interactive image search that enables users to provide feedback via natural language, allowing for more natural and effective interaction. We formulate the task of dialog-based interactive image retrieval as a reinforcement learning problem, and reward the dialog system for improving the rank of the target image during each dialog turn. To mitigate the cumbersome and costly process of collecting human-machine conversations as the dialog system learns, we train our system with a user simulator, which is itself trained to describe the differences between target and candidate images. The efficacy of our approach is demonstrated in a footwear retrieval application. Experiments on both simulated and real-world data show that 1) our proposed learning framework achieves better accuracy than other supervised and reinforcement learning baselines and 2) user feedback based on natural language rather than pre-specified attributes leads to more effective retrieval results, and a more natural and expressive communication interface.Comment: accepted at NeurIPS 201

    Learning to Disambiguate by Asking Discriminative Questions

    Full text link
    The ability to ask questions is a powerful tool to gather information in order to learn about the world and resolve ambiguities. In this paper, we explore a novel problem of generating discriminative questions to help disambiguate visual instances. Our work can be seen as a complement and new extension to the rich research studies on image captioning and question answering. We introduce the first large-scale dataset with over 10,000 carefully annotated images-question tuples to facilitate benchmarking. In particular, each tuple consists of a pair of images and 4.6 discriminative questions (as positive samples) and 5.9 non-discriminative questions (as negative samples) on average. In addition, we present an effective method for visual discriminative question generation. The method can be trained in a weakly supervised manner without discriminative images-question tuples but just existing visual question answering datasets. Promising results are shown against representative baselines through quantitative evaluations and user studies.Comment: 14 pages, 12 figures, ICCV201

    DeepStyle: Multimodal Search Engine for Fashion and Interior Design

    Full text link
    In this paper, we propose a multimodal search engine that combines visual and textual cues to retrieve items from a multimedia database aesthetically similar to the query. The goal of our engine is to enable intuitive retrieval of fashion merchandise such as clothes or furniture. Existing search engines treat textual input only as an additional source of information about the query image and do not correspond to the real-life scenario where the user looks for 'the same shirt but of denim'. Our novel method, dubbed DeepStyle, mitigates those shortcomings by using a joint neural network architecture to model contextual dependencies between features of different modalities. We prove the robustness of this approach on two different challenging datasets of fashion items and furniture where our DeepStyle engine outperforms baseline methods by 18-21% on the tested datasets. Our search engine is commercially deployed and available through a Web-based application.Comment: Copyright held by IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    A Procedural Texture Generation Framework Based on Semantic Descriptions

    Full text link
    Procedural textures are normally generated from mathematical models with parameters carefully selected by experienced users. However, for naive users, the intuitive way to obtain a desired texture is to provide semantic descriptions such as "regular," "lacelike," and "repetitive" and then a procedural model with proper parameters will be automatically suggested to generate the corresponding textures. By contrast, it is less practical for users to learn mathematical models and tune parameters based on multiple examinations of large numbers of generated textures. In this study, we propose a novel framework that generates procedural textures according to user-defined semantic descriptions, and we establish a mapping between procedural models and semantic texture descriptions. First, based on a vocabulary of semantic attributes collected from psychophysical experiments, a multi-label learning method is employed to annotate a large number of textures with semantic attributes to form a semantic procedural texture dataset. Then, we derive a low dimensional semantic space in which the semantic descriptions can be separated from one other. Finally, given a set of semantic descriptions, the diverse properties of the samples in the semantic space can lead the framework to find an appropriate generation model that uses appropriate parameters to produce a desired texture. The experimental results show that the proposed framework is effective and that the generated textures closely correlate with the input semantic descriptions.Comment: 9 pages, 10 figure

    Attention-based Natural Language Person Retrieval

    Full text link
    Following the recent progress in image classification and captioning using deep learning, we develop a novel natural language person retrieval system based on an attention mechanism. More specifically, given the description of a person, the goal is to localize the person in an image. To this end, we first construct a benchmark dataset for natural language person retrieval. To do so, we generate bounding boxes for persons in a public image dataset from the segmentation masks, which are then annotated with descriptions and attributes using the Amazon Mechanical Turk. We then adopt a region proposal network in Faster R-CNN as a candidate region generator. The cropped images based on the region proposals as well as the whole images with attention weights are fed into Convolutional Neural Networks for visual feature extraction, while the natural language expression and attributes are input to Bidirectional Long Short- Term Memory (BLSTM) models for text feature extraction. The visual and text features are integrated to score region proposals, and the one with the highest score is retrieved as the output of our system. The experimental results show significant improvement over the state-of-the-art method for generic object retrieval and this line of research promises to benefit search in surveillance video footage.Comment: CVPR 2017 Workshop (vision meets cognition
    • …
    corecore