21 research outputs found

    Application of Remote Sensing Data for Locust Research and Management-A Review

    Get PDF
    Recently, locust outbreaks around the world have destroyed agricultural and natural vegetation and caused massive damage endangering food security. Unusual heavy rainfalls in habitats of the desert locust (Schistocerca gregaria) and lack of monitoring due to political conflicts or inaccessibility of those habitats lead to massive desert locust outbreaks and swarms migrating over the Arabian Peninsula, East Africa, India and Pakistan. At the same time, swarms of the Moroccan locust (Dociostaurus maroccanus) in some Central Asian countries and swarms of the Italian locust (Calliptamus italicus) in Russia and China destroyed crops despite developed and ongoing monitoring and control measurements. These recent events underline that the risk and damage caused by locust pests is as present as ever and affects 100 million of human lives despite technical progress in locust monitoring, prediction and control approaches. Remote sensing has become one of the most important data sources in locust management. Since the 1980s, remote sensing data and applications have accompanied many locust management activities and contributed to an improved and more effective control of locust outbreaks and plagues. Recently, open-access remote sensing data archives as well as progress in cloud computing provide unprecedented opportunity for remote sensing-based locust management and research. Additionally, unmanned aerial vehicle (UAV) systems bring up new prospects for a more effective and faster locust control. Nevertheless, the full capacity of available remote sensing applications and possibilities have not been exploited yet. This review paper provides a comprehensive and quantitative overview of international research articles focusing on remote sensing application for locust management and research. We reviewed 110 articles published over the last four decades, and categorized them into different aspects and main research topics to summarize achievements and gaps for further research and application development. The results reveal a strong focus on three species-the desert locust, the migratory locust (Locusta migratoria), and the Australian plague locust (Chortoicetes terminifera)-and corresponding regions of interest. There is still a lack of international studies for other pest species such as the Italian locust, the Moroccan locust, the Central American locust (Schistocerca piceifrons), the South American locust (Schistocerca cancellata), the brown locust (Locustana pardalina) and the red locust (Nomadacris septemfasciata). In terms of applied sensors, most studies utilized Advanced Very-High-Resolution Radiometer (AVHRR), Satellite Pour l'Observation de la Terre VEGETATION (SPOT-VGT), Moderate-Resolution Imaging Spectroradiometer (MODIS) as well as Landsat data focusing mainly on vegetation monitoring or land cover mapping. Application of geomorphological metrics as well as radar-based soil moisture data is comparably rare despite previous acknowledgement of their importance for locust outbreaks. Despite great advance and usage of available remote sensing resources, we identify several gaps and potential for future research to further improve the understanding and capacities of the use of remote sensing in supporting locust outbreak- research and management

    A systematic review on the use of remote sensing technologies in quantifying grasslands ecosystem services

    Get PDF
    The last decade has seen considerable progress in scientific research on vegetation ecosystem services. While much research has focused on forests and wetlands, grasslands also provide a variety of different provisioning, supporting, cultural, and regulating services. With recent advances in remote sensing technology, there is a possibility that Earth observation data could contribute extensively to research on grassland ecosystem services. This study conducted a systematic review on progress, emerging gaps, and opportunities on the application of remote sensing technologies in quantifying all grassland ecosystem services including those that are related to water. The contribution of biomass, Leaf Area Index (LAI), and Canopy Storage Capacity (CSC) as water-related ecosystem services derived from grasslands was explored. Two hundred and twenty-two peer-reviewed articles from Web of Science, Scopus, and Institute of Electrical and Electronics Engineers were analyzed. About 39% of the studies were conducted in Asia with most of the contributions coming from China while a few studies were from the global south regions such as Southern Africa. Overall, forage provision, climate regulation, and primary production were the most researched grassland ecosystem services in the context of Earth observation data applications. About 39 Earth observation sensors were used in the literature to map grassland ecosystem services and MODIS had the highest utilization frequency. The most widely used vegetation indices for mapping general grassland ecosystem services in literature included the red and near-infrared sections of the electromagnetic spectrum. Remote sensing algorithms used within the retrieved literature include process-based models, machine learning algorithms, and multivariate techniques. For water-related grassland ecosystem services, biomass, CSC, and LAI were the most prominent proxies characterized by remotely sensed data for under-standing evapotranspiration, infiltration, run-off, soil water availability, groundwater restoration and surface water balance. An understanding of such hydrological processes is crucial in providing insights on water redistribution and balance within grassland ecosystems which is important for water management
    corecore