47 research outputs found

    Priority Queueing System with a Single Server Serving Two Queues M[X1],M[X2]/G1,G2/1 with Balking and Optional Server Vacation

    Get PDF
    In this paper we study a vacation queueing system with a single server simultaneously dealing with an M[x1] /G1/1 and an M[x2] /G2/1 queues. Two classes of units, priority and non-priority, arrive at the system in two independent compound Poisson streams. Under a non-preemptive priority rule, the server provides a general service to the priority and non-priority units. We further assume that the server may take a vacation of random length just after serving the last customer in the priority unit present in the system. If the server is busy or on vacation, an arriving non-priority customer either join the queue with probability b or balks(does not join the queue) with probability (1 - b). The time dependent probability generating functions have been obtained in terms of their Laplace transforms and the corresponding steady state results are obtained explicitly. Also the average number of customer in the priority and the non-priority queue and the average waiting time are derived. Numerical results are computed

    (R2051) Analysis of MAP/PH1, PH2/2 Queueing Model with Working Breakdown, Repairs, Optional Service, and Balking

    Get PDF
    In this paper, a classical queueing system with two types of heterogeneous servers has been considered. The Markovian Arrival Process (MAP) is used for the customer arrival, while phase type distribution (PH) is applicable for the offering of service to customers as well as the repair time of servers. Optional service are provided by the servers to the unsatisfied customers. The server-2 may get breakdown during the busy period of any type of service. Though the server- 2 got breakdown, server-2 has a capacity to provide the service at a slower rate to the current customer who is receiving service when the moment of server-2 struck with breakdown. In the period of vacation/closedown of server-1 and the server-2 is in working breakdown or under repair process, the arrival of customers may balk the system due to the impatient. Stability conditions has derived for our system and the stationary probability vector was evaluated by using the matrix analytical method. This model also examined at the analysis of busy period,waiting time distribution and system performance measures. The numerical illustrations are provided with the aid of two dimensional and three dimensional graphs

    (R1881) Impatient Customers in Queueing System with Optional Vacation Policies and Power Saving Mode

    Get PDF
    In this manuscript, a queueing system with two optional vacation policies, power-saving mode under reneging and retention of reneged customers in both vacations is analyzed. If the server is free, it chooses either of the vacations, classical vacation or working vacation. During vacations, the customers may get impatient due to delays and may leave the system, but they are retained in the system with some convincing mechanisms. On vacation completion, if the system is empty, the server is turned off to facilitate better utilization of the resources. Some of the operating system characteristics are derived using the probability generating functions technique. The numerical results are graphically represented by using MATLAB software

    Analysis of repairable M[X]/(G1,G2)/1 - feedback retrial G-queue with balking and starting failures under at most J vacations

    Get PDF
    In this paper, we discuss the steady state analysis of a batch arrival feedback retrial queue with two types of services and negative customers. Any arriving batch of positive customers finds the server is free, one of the customers from the batch enters into the service area and the rest of them get into the orbit. The negative customer, is arriving during the service time of a positive customer, will remove the positive customer in-service and the interrupted positive customer either enters the orbit or leaves the system. If the orbit is empty at the service completion of each type of service, the server takes at most J vacations until at least one customer is received in the orbit when the server returns from a vacation. While the busy server may breakdown at any instant and the service channel may fail for a short interval of time. The steady state probability generating function for the system size is obtained by using the supplementary variable method. Numerical illustrations are discussed to see the effect of the system parameters

    Analysis of repairable M[X]/(G1,G2)/1 - feedback retrial G-queue with balking and starting failures under at most J vacations

    Get PDF
    In this paper, we discuss the steady state analysis of a batch arrival feedback retrial queue with two types of service and negative customers. Any arriving batch of positive customers finds the server is free, one of the customers from the batch enters into the service area and the rest of them join into the orbit. The negative customer, arriving during the service time of a positive customer, will remove the positive customer in-service and the interrupted positive customer either enters into the orbit or leaves the system. If the orbit is empty at the service completion of each type of service, the server takes at most J vacations until at least one customer is received in the orbit when the server returns from a vacation. The busy server may breakdown at any instant and the service channel will fail for a short interval of time. The steady state probability generating function for the system size is obtained by using the supplementary variable method. Numerical illustrations are discussed to see the effect of system parameters

    (R1971) Analysis of Feedback Queueing Model with Differentiated Vacations under Classical Retrial Policy

    Get PDF
    This paper analyzes an M/M/1 retrial queue under differentiated vacations and Bernoulli feedback policy. On receiving the service, if the customer is not satisfied, then he may join the retrial group again with some probability and demand for service or may leave the system with the complementary probability. Using the probability generating functions technique, the steady-state solutions of the system are obtained. Furthermore, we have obtained some of the important performance measures such as expected orbit length, expected length of the system, sojourn times and probability of server being in different states. Using MATLAB software, we have represented the graphical interpretation of the results obtained. Finally, the cost is optimized using the parabolic method

    Stability Condition of a Retrial Queueing System with Abandoned and Feedback Customers

    Get PDF
    This paper deals with the stability of a retrial queueing system with two orbits, abandoned and feedback customers. Two independent Poisson streams of customers arrive to the system, and flow into a single-server service system. An arriving one of type i; i = 1; 2, is handled by the server if it is free; otherwise, it is blocked and routed to a separate type-i retrial (orbit) queue that attempts to re-dispatch its jobs at its specific Poisson rate. The customer in the orbit either attempts service again after a random time or gives up receiving service and leaves the system after a random time. After the customer is served completely, the customer will decide either to join the retrial group again for another service or leave the system forever with some probability

    Performance Analysis of a Retrial Queueing System with Optional Service, Unreliable Server, Balking and Feedback

    Get PDF
    This paper considers a Markovian retrial queueing system with an optional service, unreliable server, balking and feedback. An arriving customer can avail of immediate service if the server is free. If the potential customer encounters a busy server, it may either join the orbit or balk the system. The customers may retry their request for service from the orbit after a random amount of time. Each customer gets the First Essential Service (FES). After the completion of FES, the customers may seek the Second Optional Service (SOS) or leave the system. In the event of unforeseen circumstances, the server may encounter a breakdown, at which point an immediate repair process will be initiated. After the service completion, the customer may leave the system or re-join the orbit if not satisfied and demand regular service as feedback. In this investigation, the stationary queue size distributions are framed using a recursive approach. Various system performance measures are derived. The effects induced by the system parameters on the performance metrics are numerically and graphically analysed

    Transient behavior of M[x]/G/1 Retrial Queueing Model with Non Persistent Customers, Random break down, Delaying Repair and Bernoulli Vacation

    Get PDF
    In this paper we consider a single server batch arrival non-Markovian retrial queueing model with non persistent customers. In accordance with Poisson process, customers arrive in batches with arrival rate  and are served one by one with first come first served basis. The server is being considered as unreliable that it may encounter break down at any time. In order to resume its service the server has to be sent for repair, but the repair does not start immediately so that there is a waiting time before the repair process. The customer, who finds the server busy upon arrival, can either join the orbit with probability p or he/she can leave the system with probability 1-p. More details can be found in the full paper. Key words: Batch size, break down, delay time, transient solution, steady solution,  reliability indices

    Transient Solution of M[X1],M[X2]/G1,G2/1 with Priority Services, Modified Bernoulli Vacation, Bernoulli Feedback, Breakdown, Delaying Repair and Reneging

    Get PDF
    This paper considers a queuing system which facilitates a single server that serves two classes of units: high priority and low priority units. These two classes of units arrive at the system in two independent compound Poisson processes. It aims to decipher average queue size and average waiting time of the units. Under the pre-emptive priority rule, the server provides a general service to these arriving units. It is further assumed the server may take a vacation after serving the last high priority unit present in the system or at the service completion of each low priority unit present in the system. Otherwise, he may remain in the system. Also, if a high priority unit is not satisfied with the service given it may join the tail of the queue as a feedback unit or leave the system. The server may break down exponentially while serving the units. The repair process of the broken server is not immediate. There is a delay time to start the repair. The delay time to repair and repair time follow general distributions. We consider reneging to occur for the low priority units when the server is unavailable due to breakdown or vacation. We concentrate on deriving the transient solutions by using supplementary variable technique. Further, some special cases are also discussed and numerical examples are presented
    corecore