743 research outputs found

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    Minimum-cost multicast over coded packet networks

    Get PDF
    We consider the problem of establishing minimum-cost multicast connections over coded packet networks, i.e., packet networks where the contents of outgoing packets are arbitrary, causal functions of the contents of received packets. We consider both wireline and wireless packet networks as well as both static multicast (where membership of the multicast group remains constant for the duration of the connection) and dynamic multicast (where membership of the multicast group changes in time, with nodes joining and leaving the group). For static multicast, we reduce the problem to a polynomial-time solvable optimization problem, and we present decentralized algorithms for solving it. These algorithms, when coupled with existing decentralized schemes for constructing network codes, yield a fully decentralized approach for achieving minimum-cost multicast. By contrast, establishing minimum-cost static multicast connections over routed packet networks is a very difficult problem even using centralized computation, except in the special cases of unicast and broadcast connections. For dynamic multicast, we reduce the problem to a dynamic programming problem and apply the theory of dynamic programming to suggest how it may be solved

    Network Coding Meets TCP: Theory and Implementation

    Get PDF
    The theory of network coding promises significant benefits in network performance, especially in lossy networks and in multicast and multipath scenarios. To realize these benefits in practice, we need to understand how coding across packets interacts with the acknowledgment (ACK)-based flow control mechanism that forms a central part of today's Internet protocols such as transmission control protocol (TCP). Current approaches such as rateless codes and batch-based coding are not compatible with TCP's retransmission and sliding-window mechanisms. In this paper, we propose a new mechanism called TCP/NC that incorporates network coding into TCP with only minor changes to the protocol stack, thereby allowing incremental deployment. In our scheme, the source transmits random linear combinations of packets currently in the congestion window. At the heart of our scheme is a new interpretation of ACKs-the sink acknowledges every degree of freedom (i.e., a linear combination that reveals one unit of new information) even if it does not reveal an original packet immediately. Thus, our new TCP ACK rule takes into account the network coding operations in the lower layer and enables a TCP-compatible sliding-window approach to network coding. Coding essentially masks losses from the congestion control algorithm and allows TCP/NC to react smoothly to losses, resulting in a novel and effective approach for congestion control over lossy networks such as wireless networks. An important feature of our solution is that it allows intermediate nodes to perform re-encoding of packets, which is known to provide significant throughput gains in lossy networks and multicast scenarios. Simulations show that our scheme, with or without re-encoding inside the network, achieves much higher throughput compared to TCP over lossy wireless links. We present a real-world implementation of this protocol that addresses the practical aspects of incorporating network coding and decoding with TCP's wind ow management mechanism. We work with TCP-Reno, which is a widespread and practical variant of TCP. Our implementation significantly advances the goal of designing a deployable, general, TCP-compatible protocol that provides the benefits of network coding.National Science Foundation (U.S.) (Grant CNS-0627021)National Science Foundation (U.S.) (Grant CNS-0721491)National Science Foundation (U.S.) (Grant CCF-0915922)United States. Defense Advanced Research Projects Agency (Subcontract 18870740-37362-C)United States. Defense Advanced Research Projects Agency (Subcontract 060786)United States. Defense Advanced Research Projects Agency (Subcontract 069145)United States. Defense Advanced Research Projects Agency (Contract N66001-06-C-2020)Space and Naval Warfare Systems Center San Diego (U.S.) (Contract N66001- 08-C-2013

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    Performance enhancements in next generation wireless networks using network coding : a case study in WiMAX

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 125-130).In this thesis, we design and implement a network-coding-enhanced network architecture for next generation wireless networks. The architecture applies intra-session random linear network coding as a packet erasure code below the IP layer. Using WiMAX as a case study, a series of point-to-point single-interface experiments are conducted to compare the performance of the architecture to that of HARQ and ARQ mechanisms. The performance measures are packet loss percentage, throughput and file transfer delay. The experiments use the Global Environment for Network Innovations (GENI) WiMAX platforms. UDP traffic considered; Iperf and UDP based File Transfer Protocol (UFTP) are used as measurement applications. The proposed architecture substantially decreases packet loss percentage from around 11-32% to nearly 0%. Compared to HARQ and ARQ mechanisms, the architecture can offer up to 5.9 times gain in throughput and 5.5 times reduction in end-to-end fi le transfer delay.by Surat Teerapittayanon.M.Eng
    • …
    corecore