21 research outputs found

    Unsupervised Retinal Blood Vessel Segmentation Technique using pdAPSO and Difference Image Methods for Detection of Diabetic Retinopathy

    Get PDF
    Retinal vessel segmentation is a practice that has the potential of enhancing accuracy in the diagnosis and timely prevention of illnesses that are related to blood vessels. Acute damage to the retinal vessel has been identified to be the main cause of blindness and impaired vision. A timely detection and control of these illnesses can greatly decrease the number of loss of sight cases. However, the manual protocol for such detection is laborious and although autonomous methods have been recommended, the accuracy of these methods is often unreliable. We propose the utilization of the Primal-Dual Asynchronous Particle Swarm Optimisation (pdAPSO) and differential image methods in addressing the drawbacks associated with segmentation of retinal vessels in this study. The fusion of pdAPSO and differential image (which focuses on the median filter) produced a significant enhancement in the segmentation of huge and miniscule retinal vessels. In addition, the method also decreased erroneous detection near the edge of the retinal (that is not sensitive to light). The results are favourable for the median filter when compared to mean filter and Gaussian filter. The accuracy rate of 0.9559 (with a specificity of sensitivity rate of 0.9855), and a sensitivity rate of 0.7218 were obtained when tested using the Digital Retinal Images for Vessel Extraction database. The above result is a pointer that our approach will help in detecting and diagnosing the damage done to the retinal and thereby preventing loss of sight

    A review of feature-based retinal image analysis

    Get PDF
    Retinal imaging is a fundamental tool in ophthalmic diagnostics. The potential use of retinal imaging within screening programs, with consequent need to analyze large numbers of images with high throughput, is pushing the digital image analysis field to find new solutions for the extraction of specific information from the retinal image. The aim of this review is to explore the latest progress in image processing techniques able to recognize specific retinal image features. and potential features of disease. In particular, this review aims to describe publically available retinal image databases, highlight different performance evaluators commonly used within the field, outline current approaches in feature-based retinal image analysis, and to map related trends. This review found two key areas to be addressed for the future development of automatic retinal image analysis: fundus image quality and the affect image processing may impose on relevant clinical information within the images. Performance evaluators of the algorithms reviewed are very promising, however absolute values are difficult to interpret when validating system suitability for use within clinical practice

    A Rule Based Segmentation Approaches to Extract Retinal Blood Vessels in Fundus Image

    Get PDF
    The physiological structures of the retinal blood vessel are one of the key features that visible in the retinal images and contain the information associate with the anatomical abnormalities. It is accepted all over the world to judge the cardiovascular and retinal disease. To avoid the risk of visual impairment, appropriate vessel segmentation is mandatory. Here has proposed a segmentation algorithm that efficiently extracts the blood vessels from the retinal fundus image. The proposed segmentation algorithm is performed Lab and Principle Component (PC) based gray level conversion, Contrast Limited Adaptive Histogram Equalization (CLAHE), morphological operations, Local Property-Based Pixel Correction (LPBPC). For appropriate detection proposed vessels correction algorithm LPBPC that check the feature of the vessels and remove the wrong vessel detection. To measure the appropriateness of the proposed algorithm, the experimental results are compared with the corresponding ground truth images. The experimental results have shown that the proposed blood vessel algorithm is more accurate than the existing algorithms

    Retinal blood vessel segmentation for macula detachment surgery monitoring instruments

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144261/1/cta2462_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144261/2/cta2462.pd

    Automated Vessel Segmentation Using Infinite Perimeter Active Contour Model with Hybrid Region Information with Application to Retinal Images

    Get PDF
    Automated detection of blood vessel structures is becoming of crucial interest for better management of vascular disease. In this paper, we propose a new infinite active contour model that uses hybrid region information of the image to approach this problem. More specifically, an infinite perimeter regularizer, provided by using L 2 Lebesgue measure of the γ-neighborhood of boundaries, allows for better detection of small oscillatory (branching) structures than the traditional models based on the length of a feature's boundaries (i.e., H 1 Hausdorff measure). Moreover, for better general segmentation performance, the proposed model takes the advantage of using different types of region information, such as the combination of intensity information and local phase based enhancement map. The local phase based enhancement map is used for its superiority in preserving vessel edges while the given image intensity information will guarantee a correct feature's segmentation. We evaluate the performance of the proposed model by applying it to three public retinal image datasets (two datasets of color fundus photography and one fluorescein angiography dataset). The proposed model outperforms its competitors when compared with other widely used unsupervised and supervised methods. For example, the sensitivity (0.742), specificity (0.982) and accuracy (0.954) achieved on the DRIVE dataset are very close to those of the second observer's annotations
    corecore