54 research outputs found

    Image Segmentation and Its Applications Based on the Mumford-Shah Model

    Get PDF
    Image segmentation is an important topic in computer vision and image processing. As a region-based (global) approach, the Mumford and Shah (MS) model is a powerful and robust segmentation technique as compared to edge-based (local) methods. In this thesis we apply the MS model to two interesting problems: image inpainting and text line detection. We further extend it by proposing a new image segmentation model to overcome some of the difficulties of the original model. As a demonstration of the new model, we apply it to the segmentation of retinal images. The results are better than the state-of-the-art approaches. In image inpainting, the MS model is used to detect and estimate the object boundaries inside the inpainting areas. These boundaries are preserved in the inpainting results. We present a hierarchical segmentation method to detect boundaries of both the main structure and the details. The inpainting result can preserve detailed edges. In text line detection, we use a combination of Gaussian blurring, the MS model, and morphing method. Different from other general text image detection approaches, our method segments text documents without any knowledge of the written texts, so it can detect handwriting text lines of different languages. It can also handle different gaps and overlaps among the text lines. Although the MS model has been used successfully in many applications, its implementation has always been based on some forms of approximation. These approximations are either inefficient computationally or applicable only to some special cases. Our new model consists of only one variable, the segmentation curve, therefore the computation is very efficient. Furthermore, no approximation is required, hence the method can segment objects with complicated intensity distribution. The new model can detect both step and roof edges, and can use different filters to detect objects of different levels of intensity. To show the advantages of the new model, we use a combination of the new model and Gabor filter to detect blood vessels in retinal images. This new model can detect objects with complicated image intensity distribution, and can handle non-uniform illumination cases effectively

    A Novel Retinal Blood Vessel Segmentation Algorithm using Fuzzy segmentation

    Get PDF
    Assessment of blood vessels in retinal images is an important factor for many medical disorders. The changes in the retinal vessels due to the pathologies can be easily identified by segmenting the retinal vessels. Segmentation of retinal vessels is done to identify the early diagnosis of the disease like glaucoma, diabetic retinopathy, macular degeneration, hypertensive retinopathy and arteriosclerosis. In this paper, we propose an automatic blood vessel segmentation method. The proposed algorithm starts with the extraction of blood vessel centerline pixels. The final segmentation is obtained using an iterative region growing method that merges the binary images resulting from centerline detection part with the image resulting from fuzzy vessel segmentation part. In this proposed algorithm, the blood vessel is enhanced using modified morphological operations and the salt and pepper noises are removed from retinal images using Adaptive Fuzzy Switching Median filter. This method is applied on two publicly available databases, the DRIVE and the STARE and the experimental results obtained by using green channel images have been presented and compared with recently published methods. The results demonstrate that our algorithm is very effective method to detect retinal blood vessels.DOI:http://dx.doi.org/10.11591/ijece.v4i4.625

    Two Novel Retinal Blood Vessel Segmentation Algorithms

    Get PDF
    Assessment of blood vessels in retinal images is an important factor for many medical disorders. The changes in the retinal vessels due to the pathologies can be easily identified by segmenting the retinal vessels. Segmentation of retinal vessels is done to identify the early diagnosis of the disease like glaucoma, diabetic retinopathy, macular degeneration, hypertensive retinopathy and arteriosclerosis. In this paper, we propose two automatic blood vessel segmentation methods. The first proposed algorithm starts with the extraction of blood vessel centerline pixels. The final segmentation is obtained using an iterative region growing method that merges the contents of several binary images resulting from vessel width dependent modified morphological filters on normalized retinal images. In the second proposed algorithm the blood vessel is segmented using normalized modified morphological operations and neuro fuzzy classifier. Normalized morphological operations are used to enhance the vessels and neuro fuzzy classifier is used to segment retinal blood vessels. These methods are applied on the publicly available DRIVE database and the experimental results obtained by using green channel images have been presented and their results are compared with recently published methods. The results demonstrate that our algorithms are very effective methods to detect retinal blood vessels.DOI:http://dx.doi.org/10.11591/ijece.v4i3.582

    A Hierarchical Algorithm for Multiphase Texture Image Segmentation

    Get PDF

    Joint methods in imaging based on diffuse image representations

    Get PDF
    This thesis deals with the application and the analysis of different variants of the Mumford-Shah model in the context of image processing. In this kind of models, a given function is approximated in a piecewise smooth or piecewise constant manner. Especially the numerical treatment of the discontinuities requires additional models that are also outlined in this work. The main part of this thesis is concerned with four different topics. Simultaneous edge detection and registration of two images: The image edges are detected with the Ambrosio-Tortorelli model, an approximation of the Mumford-Shah model that approximates the discontinuity set with a phase field, and the registration is based on these edges. The registration obtained by this model is fully symmetric in the sense that the same matching is obtained if the roles of the two input images are swapped. Detection of grain boundaries from atomic scale images of metals or metal alloys: This is an image processing problem from materials science where atomic scale images are obtained either experimentally for instance by transmission electron microscopy or by numerical simulation tools. Grains are homogenous material regions whose atomic lattice orientation differs from their surroundings. Based on a Mumford-Shah type functional, the grain boundaries are modeled as the discontinuity set of the lattice orientation. In addition to the grain boundaries, the model incorporates the extraction of a global elastic deformation of the atomic lattice. Numerically, the discontinuity set is modeled by a level set function following the approach by Chan and Vese. Joint motion estimation and restoration of motion-blurred video: A variational model for joint object detection, motion estimation and deblurring of consecutive video frames is proposed. For this purpose, a new motion blur model is developed that accurately describes the blur also close to the boundary of a moving object. Here, the video is assumed to consist of an object moving in front of a static background. The segmentation into object and background is handled by a Mumford-Shah type aspect of the proposed model. Convexification of the binary Mumford-Shah segmentation model: After considering the application of Mumford-Shah type models to tackle specific image processing problems in the previous topics, the Mumford-Shah model itself is studied more closely. Inspired by the work of Nikolova, Esedoglu and Chan, a method is developed that allows global minimization of the binary Mumford-Shah segmentation model by solving a convex, unconstrained optimization problem. In an outlook, segmentation of flowfields into piecewise affine regions using this convexification method is briefly discussed

    Segmentation of brain tumors in MRI images using three-dimensional active contour without edge

    Get PDF
    Brain tumor segmentation in magnetic resonance imaging (MRI) is considered a complex procedure because of the variability of tumor shapes and the complexity of determining the tumor location, size, and texture. Manual tumor segmentation is a time-consuming task highly prone to human error. Hence, this study proposes an automated method that can identify tumor slices and segment the tumor across all image slices in volumetric MRI brain scans. First, a set of algorithms in the pre-processing stage is used to clean and standardize the collected data. A modified gray-level co-occurrence matrix and Analysis of Variance (ANOVA) are employed for feature extraction and feature selection, respectively. A multi-layer perceptron neural network is adopted as a classifier, and a bounding 3D-box-based genetic algorithm is used to identify the location of pathological tissues in the MRI slices. Finally, the 3D active contour without edge is applied to segment the brain tumors in volumetric MRI scans. The experimental dataset consists of 165 patient images collected from the MRI Unit of Al-Kadhimiya Teaching Hospital in Iraq. Results of the tumor segmentation achieved an accuracy of 89% +/- 4.7% compared with manual processes
    • …
    corecore