745 research outputs found

    Automated Fovea Detection Based on Unsupervised Retinal Vessel Segmentation Method

    Get PDF
    The Computer Assisted Diagnosis systems could save workloads and give objective diagnostic to ophthalmologists. At first level of automated screening of systems feature extraction is the fundamental step. One of these retinal features is the fovea. The fovea is a small fossa on the fundus, which is represented by a deep-red or red-brown color in color retinal images. By observing retinal images, it appears that the main vessels diverge from the optic nerve head and follow a specific course that can be geometrically modeled as a parabola, with a common vertex inside the optic nerve head and the fovea located along the apex of this parabola curve. Therefore, based on this assumption, the main retinal blood vessels are segmented and fitted to a parabolic model. With respect to the core vascular structure, we can thus detect fovea in the fundus images. For the vessel segmentation, our algorithm addresses the image locally where homogeneity of features is more likely to occur. The algorithm is composed of 4 steps: multi-overlapping windows, local Radon transform, vessel validation, and parabolic fitting. In order to extract blood vessels, sub-vessels should be extracted in local windows. The high contrast between blood vessels and image background in the images cause the vessels to be associated with peaks in the Radon space. The largest vessels, using a high threshold of the Radon transform, determines the main course or overall configuration of the blood vessels which when fitted to a parabola, leads to the future localization of the fovea. In effect, with an accurate fit, the fovea normally lies along the slope joining the vertex and the focus. The darkest region along this line is the indicative of the fovea. To evaluate our method, we used 220 fundus images from a rural database (MUMS-DB) and one public one (DRIVE). The results show that, among 20 images of the first public database (DRIVE) we detected fovea in 85% of them. Also for the MUMS-DB database among 200 images we detect fovea correctly in 83% on them

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Retinal network characterization through fundus image processing: Significant point identification on vessel centerline

    Get PDF
    [EN] This paper describes a new approach for significant point identification on vessel centerline. Significant points such as bifurcations and crossovers are able to define and characterize the retinal vascular network. In particular, hit-or-miss transformation is used to detect terminal, bifurcation and simple crossing points but a post-processing stage is needed to identify complex intersections. This stage focuses on the idea that the intersection of two vessels creates a sort of close loop formed by the vessels and this effect can be used to differentiate a bifurcation from a crossover. Experimental results show quantitative improvements by increasing the number of true positives and reducing the false positives and negatives in the significant point detection when the proposed method is compared with another state-of-the-art work. A sensitivity equal to 1 and a predictive positive value of 0.908 was achieved in the analyzed cases. Hit-or-miss transformation must be applied on a binary skeleton image. Therefore, a method to extract the vessel skeleton in a direct way is also proposed. Although the identification of the significant points of the retinal tree can be useful by itself for multiple applications such as biometrics and image registration, this paper presents an algorithm that makes use of the significant points to measure the bifurcation angles of the retinal network which can be related to cardiovascular risk determination.This work was supported by the Ministerio de Economia y Conipetitividad of Spain, Project ACRIMA (TIN2013-46751-R). The authors would like to thank people who provide the public databases used in this work (DRIVE, STARE and VARIA).Morales, S.; Naranjo Ornedo, V.; Angulo, J.; Legaz-Aparicio, A.; Verdu-Monedero, R. (2017). Retinal network characterization through fundus image processing: Significant point identification on vessel centerline. Signal Processing: Image Communication. 59:50-64. https://doi.org/10.1016/j.image.2017.03.013S50645

    Tracking and diameter estimation of retinal vessels using Gaussian process and Radon transform

    Get PDF
    Extraction of blood vessels in retinal images is an important step for computer-aided diagnosis of ophthalmic pathologies. We propose an approach for blood vessel tracking and diameter estimation. We hypothesize that the curvature and the diameter of blood vessels are Gaussian processes (GPs). Local Radon transform, which is robust against noise, is subsequently used to compute the features and train the GPs. By learning the kernelized covariance matrix from training data, vessel direction and its diameter are estimated. In order to detect bifurcations, multiple GPs are used and the difference between their corresponding predicted directions is quantified. The combination of Radon features and GP results in a good performance in the presence of noise. The proposed method successfully deals with typically difficult cases such as bifurcations and central arterial reflex, and also tracks thin vessels with high accuracy. Experiments are conducted on the publicly available DRIVE, STARE, CHASEDB1, and high-resolution fundus databases evaluating sensitivity, specificity, and Matthew’s correlation coefficient (MCC). Experimental results on these datasets show that the proposed method reaches an average sensitivity of 75.67%, specificity of 97.46%, and MCC of 72.18% which is comparable to the state-of-the-art

    A Review: Person Identification using Retinal Fundus Images

    Get PDF
    In this paper a review on biometric person identification has been discussed using features from retinal fundus image. Retina recognition is claimed to be the best person identification method among the biometric recognition systems as the retina is practically impossible to forge. It is found to be most stable, reliable and most secure among all other biometric systems. Retina inherits the property of uniqueness and stability. The features used in the recognition process are either blood vessel features or non-blood vessel features. But the vascular pattern is the most prominent feature utilized by most of the researchers for retina based person identification. Processes involved in this authentication system include pre-processing, feature extraction and feature matching. Bifurcation and crossover points are widely used features among the blood vessel features. Non-blood vessel features include luminance, contrast, and corner points etc. This paper summarizes and compares the different retina based authentication system. Researchers have used publicly available databases such as DRIVE, STARE, VARIA, RIDB, ARIA, AFIO, DRIDB, and SiMES for testing their methods. Various quantitative measures such as accuracy, recognition rate, false rejection rate, false acceptance rate, and equal error rate are used to evaluate the performance of different algorithms. DRIVE database provides 100\% recognition for most of the methods. Rest of the database the accuracy of recognition is more than 90\%

    Measurement of retinal vessel widths from fundus images based on 2-D modeling

    Get PDF
    Changes in retinal vessel diameter are an important sign of diseases such as hypertension, arteriosclerosis and diabetes mellitus. Obtaining precise measurements of vascular widths is a critical and demanding process in automated retinal image analysis as the typical vessel is only a few pixels wide. This paper presents an algorithm to measure the vessel diameter to subpixel accuracy. The diameter measurement is based on a two-dimensional difference of Gaussian model, which is optimized to fit a two-dimensional intensity vessel segment. The performance of the method is evaluated against Brinchmann-Hansen's half height, Gregson's rectangular profile and Zhou's Gaussian model. Results from 100 sample profiles show that the presented algorithm is over 30% more precise than the compared techniques and is accurate to a third of a pixel

    Automatic Location of Blood Vessel Bifurcations in Digital Eye Fundus Images

    Get PDF
    Retinal blood vessels are linked with hypertension and cardiovascular disease. It is generally known that vascular bifurcation is mainly involved in varying blood flow velocity as well as its pressure. This paper presents an efficient method for automatic location of blood vessel bifurcations in digital eye fundus images. The proposed algorithm comprised of three main steps: image enhancement, fuzzy clustering, and searching vascular bifurcation. The purposed algorithm revealed successful detection of bifurcations upon test images. Results showed improved diagnostic accuracy in identifying bifurcations with use of the proposed algorithm and encourage its use for further applications such as image registration, personal identification and pre-clinical scanning of retina diagnosis

    Computer-Aided Diagnosis Software for Hypertensive Risk Determination Through Fundus Image Processing

    Full text link
    "(c) 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."The goal of the software proposed in this paper is to assist ophthalmologists in diagnosis and disease prevention, helping them to determine cardiovascular risk or other diseases where the vessels can be altered, as well as to monitor the pathology progression and response to different treatments. The performance of the tool has been evaluated by means of a double-blind study where its sensitivity, specificity, and reproducibility to discriminate between health fundus (without cardiovascular risk) and hypertensive patients has been calculated in contrast to an expert ophthalmologist opinion obtained through a visual inspection of the fundus image. An improvement of almost 20% has been achieved comparing the system results with the clinical visual classification.This work was supported in part by Ministerio de Economia y Competitividad of Spain, Project ACRIMA (TIN2013-46751-R) and partially by the Projects Consolider-C (SEJ2006 14301/PSIC), CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII, and the Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educacion, 2008157).Morales Martínez, S.; Naranjo Ornedo, V.; Navea, A.; Alcañiz Raya, ML. (2014). Computer-Aided Diagnosis Software for Hypertensive Risk Determination Through Fundus Image Processing. IEEE Journal of Biomedical and Health Informatics. 18(6):1757-1763. https://doi.org/10.1109/JBHI.2014.2337960S1757176318
    corecore