4,535 research outputs found

    Smartphone-based, rapid, wide-field fundus photography for diagnosis of pediatric retinal diseases

    Get PDF
    PurposeAn important, unmet clinical need is for cost-effective, reliable, easy-to-use, and portable retinal photography to evaluate preventable causes of vision loss in children. This study presents the feasibility of a novel smartphone-based retinal imaging device tailored to imaging the pediatric fundus.MethodsSeveral modifications for children were made to our previous device, including a child-friendly 3D printed housing of animals, attention-grabbing targets, enhanced image stitching, and video-recording capabilities. Retinal photographs were obtained in children undergoing routine dilated eye examination. Experienced masked retina-specialist graders determined photograph quality and made diagnoses based on the images, which were compared to the treating clinician's diagnosis.ResultsDilated fundus photographs were acquired in 43 patients with a mean age of 6.7 years. The diagnoses included retinoblastoma, Coats' disease, commotio retinae, and optic nerve hypoplasia, among others. Mean time to acquire five standard photographs totaling 90-degree field of vision was 2.3 ± 1.1 minutes. Patients rated their experience of image acquisition favorably, with a Likert score of 4.6 ± 0.8 out of 5. There was 96% agreement between image-based diagnosis and the treating clinician's diagnosis.ConclusionsWe report a handheld smartphone-based device with modifications tailored for wide-field fundus photography in pediatric patients that can rapidly acquire fundus photos while being well-tolerated.Translational relevanceAdvances in handheld smartphone-based fundus photography devices decrease the technical barrier for image acquisition in children and may potentially increase access to ophthalmic care in communities with limited resources

    In Vivo Multimodal Imaging of Drusenoid Lesions in Rhesus Macaques.

    Get PDF
    Nonhuman primates are the only mammals to possess a true macula similar to humans, and spontaneously develop drusenoid lesions which are hallmarks of age-related macular degeneration (AMD). Prior studies demonstrated similarities between human and nonhuman primate drusen based on clinical appearance and histopathology. Here, we employed fundus photography, spectral domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF), and infrared reflectance (IR) to characterize drusenoid lesions in aged rhesus macaques. Of 65 animals evaluated, we identified lesions in 20 animals (30.7%). Using the Age-Related Eye Disease Study 2 (AREDS2) grading system and multimodal imaging, we identified two distinct drusen phenotypes - 1) soft drusen that are larger and appear as hyperreflective deposits between the retinal pigment epithelium (RPE) and Bruchs membrane on SD-OCT, and 2) hard, punctate lesions that are smaller and undetectable on SD-OCT. Both exhibit variable FAF intensities and are poorly visualized on IR. Eyes with drusen exhibited a slightly thicker RPE compared with control eyes (+3.4 μm, P=0.012). Genetic polymorphisms associated with drusenoid lesions in rhesus monkeys in ARMS2 and HTRA1 were similar in frequency between the two phenotypes. These results refine our understanding of drusen development, and provide insight into the absence of advanced AMD in nonhuman primates

    An in vivo evaluation of Brilliant Blue G in animals and humans

    Get PDF
    Background/Aims: To evaluate the retinal toxicity of Brilliant Blue G (BBG) following intravitreal injection in rat eyes and examine the biocompatibility and the staining properties in humans.Methods: BBG was injected into the 11 rat eyes to evaluate toxic effects with balanced salt solution (BSS) serving as control. Retinal toxicity was assessed by retinal ganglion cell (RGC) counts and by light microscopy 7 days later. In addition, BBG was applied during vitrectomy for macular hole (MH) (n = 15) or epiretinal membranes (ERM) (n = 3) in a prospective, non-comparative consecutive series of patients. Before and after surgery, all patients underwent a complete clinical examination including measurement of best corrected visual acuity (VA) and intraocular pressure, perimetry, fundus photography and optical coherence tomography. Patients were seen 1 day before surgery and then in approximately four weeks intervals.Results: No significant reduction in RGC numbers and no morphological alterations were noted. A sufficient staining of the internal limiting membrane (ILM) was seen in patients with MH, while the staining pattern in ERM cases was patchy, indicating that parts of the ILM were peeled off along with the ERM in a variable extent. All MHs could be closed successfully. VA improved in 10 eyes (56%; 8/15 MH patients, 2/3 ERM patients), was unchanged in four eyes (22%; all MH patients) and was reduced in four eyes (22%; 3/15 MH, 1/3 ERM). No toxic effects attributable to the dye were noted during patient follow-up. The ultrastructure of tissue harvested during surgery was unremarkable.Conclusion: Brilliant Blue provides a sufficient and selective staining of the ILM. No retinal toxicity or adverse effects related to the dye were observed in animal and human studies. The long-term safety of this novel dye will have to be evaluated in larger patient series and a longer follow-up

    Gene therapy restores vision in rd1 mice after removal of a confounding mutation in Gpr179

    Get PDF
    The rd1 mouse with a mutation in the Pde6b gene was the first strain of mice identified with a retinal degeneration. However, AAV-mediated gene supplementation of rd1 mice only results in structural preservation of photoreceptors, and restoration of the photoreceptor-mediated a-wave, but not in restoration of the bipolar cell-mediated b-wave. Here we show that a mutation in Gpr179 prevents the full restoration of vision in rd1 mice. Backcrossing rd1 with C57BL6 mice reveals the complete lack of b-wave in a subset of mice, consistent with an autosomal recessive Mendelian inheritance pattern. We identify a mutation in the Gpr179 gene, which encodes for a G-protein coupled receptor localized to the dendrites of ON-bipolar cells. Gene replacement in rd1 mice that are devoid of the mutation in Gpr179 successfully restores the function of both photoreceptors and bipolar cells, which is maintained for up to 13 months. Our discovery may explain the failure of previous gene therapy attempts in rd1 mice, and we propose that Grp179 mutation status should be taken into account in future studies involving rd1 mice

    MFGE8 does not influence chorio-retinal homeostasis or choroidal neovascularization in vivo

    Get PDF
    Purpose: Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or “wet” Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice. Methods: The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with “wet” AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8+/− mice expressing ß-galactosidase. Aged Mfge8+/− and Mfge8−/− mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV. Results: rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8−/− mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch's membrane (BM) was slightly but significantly thicker in Mfge8−/− mice as compared to controls. Conclusions: Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8−/− mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD

    Behavioural and pathomorphological impacts of flash photography on benthic fishes

    Get PDF
    Millions of people take animal pictures during wildlife interactions, yet the impacts of photographer behaviour and photographic flashes on animals are poorly understood. We investigated the pathomorphological and behavioural impacts of photographer behaviour and photographic flashes on 14 benthic fish species that are important for scuba diving tourism and aquarium displays. We ran a field study to test effects of photography on fish behaviour, and two laboratory studies that tested effects of photographic flashes on seahorse behaviour, and ocular and retinal anatomy. Our study showed that effects of photographic flashes are negligible and do not have stronger impacts than those caused solely by human presence. Photographic flashes did not cause changes in gross ocular and retinal anatomy of seahorses and did not alter feeding success. Physical manipulation of animals by photographing scuba divers, however, elicited strong stress responses. This study provides important new information to help develop efficient management strategies that reduce environmental impacts of wildlife tourism
    corecore