6,961 research outputs found

    Rethinking the role of interference in wireless networks

    Get PDF
    This article re-examines the fundamental notion of interference in wireless networks by contrasting traditional approaches to new concepts that handle interference in a creative way. Specifically, we discuss the fundamental limits of the interference channel and present the interference alignment technique and its extension of signal alignment techniques. Contrary to this traditional view, which treats interference as a detrimental phenomenon, we introduce three concepts that handle interference as a useful resource. The first concept exploits interference at the modulation level and leads to simple multiuser downlink precoding that provides significant energy savings. The second concept uses radio frequency radiation for energy harvesting and handles interference as a source of green energy. The last concept refers to a secrecy environment and uses interference as an efficient means to jam potential eavesdroppers. These three techniques bring a new vision about interference in wireless networks and motivate a plethora of potential new applications and services

    Passive Loop Interference Suppression in Large-Scale Full-Duplex Cellular Networks

    Full text link
    Loop interference (LI) in wireless communications, is a notion resulting from the full-duplex (FD) operation. In a large-scale network, FD also increases the multiuser interference due to the large number of active wireless links that exist. Hence, in order to realize the FD potentials, this interference needs to be restricted. This paper presents a stochastic geometry model of FD cellular networks where the users and base stations employ directional antennas. Based on previous experimental results, we model the passive suppression of the LI at each FD terminal as a function of the angle between the two antennas and show the significant gains that can be achieved by this method. Together with the reduction of multiuser interference resulting from antenna directionality, our model demonstrates that FD can potentially be implemented in large-scale directional networks.Comment: to appear in Proc. IEEE SPAWC 201

    On the effect of blockage objects in dense MIMO SWIPT networks

    Full text link
    Simultaneous information and power transfer (SWIPT) is characterised by the ambiguous role of multi-user interference. In short, the beneficial effect of multi-user interference on RF energy harvesting is obtained at the price of a reduced link capacity, thus originating nontrivial trade-offs between the achievable information rate and the harvestable energy. Arguably, in indoor environments, this trade-off might be affected by the propagation loss due to blockage objects like walls. Hence, a couple of fundamental questions arise. How much must the network elements be densified to counteract the blockage attenuation? Is blockage always detrimental on the achievable rate-energy trade-off? In this paper, we analyse the performance of an indoor multiple-input multiple-output (MIMO) SWIPT-enabled network in the attempt to shed a light of those questions. The effects of the obstacles are examined with the help of a stochastic approach in which energy transmitters (also referred to as power heads) are located by using a Poisson Point Process and walls are generated through a Manhattan Poisson Line Process. The stochastic behaviour of the signal attenuation and the multi-user interference is studied to obtain the Joint Complementary Cumulative Distribution Function (J-CCDF) of information rate and harvested power. Theoretical results are validated through Monte Carlo simulations. Eventually, the rate-energy trade-off is presented as a function of the frequency of walls to emphasise the cross-dependences between the deployment of the network elements and the topology of the venue
    corecore