111 research outputs found

    Morpho-MNIST: Quantitative Assessment and Diagnostics for Representation Learning

    Get PDF
    Revealing latent structure in data is an active field of research, having brought exciting new models such as variational autoencoders and generative adversarial networks, and is essential to push machine learning towards unsupervised knowledge discovery. However, a major challenge is the lack of suitable benchmarks for an objective and quantitative evaluation of learned representations. To address this issue we introduce Morpho-MNIST. We extend the popular MNIST dataset by adding a morphometric analysis enabling quantitative comparison of different models, identification of the roles of latent variables, and characterisation of sample diversity. We further propose a set of quantifiable perturbations to assess the performance of unsupervised and supervised methods on challenging tasks such as outlier detection and domain adaptation

    InfoNCE is a variational autoencoder

    Full text link
    We show that a popular self-supervised learning method, InfoNCE, is a special case of a new family of unsupervised learning methods, the self-supervised variational autoencoder (SSVAE). SSVAEs circumvent the usual VAE requirement to reconstruct the data by using a carefully chosen implicit decoder. The InfoNCE objective was motivated as a simplified parametric mutual information estimator. Under one choice of prior, the SSVAE objective (i.e. the ELBO) is exactly equal to the mutual information (up to constants). Under an alternative choice of prior, the SSVAE objective is exactly equal to the simplified parametric mutual information estimator used in InfoNCE (up to constants). Importantly, the use of simplified parametric mutual information estimators is believed to be critical to obtain good high-level representations, and the SSVAE framework naturally provides a principled justification for using prior information to choose these estimators

    Reimagining Speech: A Scoping Review of Deep Learning-Powered Voice Conversion

    Full text link
    Research on deep learning-powered voice conversion (VC) in speech-to-speech scenarios is getting increasingly popular. Although many of the works in the field of voice conversion share a common global pipeline, there is a considerable diversity in the underlying structures, methods, and neural sub-blocks used across research efforts. Thus, obtaining a comprehensive understanding of the reasons behind the choice of the different methods in the voice conversion pipeline can be challenging, and the actual hurdles in the proposed solutions are often unclear. To shed light on these aspects, this paper presents a scoping review that explores the use of deep learning in speech analysis, synthesis, and disentangled speech representation learning within modern voice conversion systems. We screened 621 publications from more than 38 different venues between the years 2017 and 2023, followed by an in-depth review of a final database consisting of 123 eligible studies. Based on the review, we summarise the most frequently used approaches to voice conversion based on deep learning and highlight common pitfalls within the community. Lastly, we condense the knowledge gathered, identify main challenges and provide recommendations for future research directions

    Disentangling Content and Motion for Text-Based Neural Video Manipulation

    Full text link
    Giving machines the ability to imagine possible new objects or scenes from linguistic descriptions and produce their realistic renderings is arguably one of the most challenging problems in computer vision. Recent advances in deep generative models have led to new approaches that give promising results towards this goal. In this paper, we introduce a new method called DiCoMoGAN for manipulating videos with natural language, aiming to perform local and semantic edits on a video clip to alter the appearances of an object of interest. Our GAN architecture allows for better utilization of multiple observations by disentangling content and motion to enable controllable semantic edits. To this end, we introduce two tightly coupled networks: (i) a representation network for constructing a concise understanding of motion dynamics and temporally invariant content, and (ii) a translation network that exploits the extracted latent content representation to actuate the manipulation according to the target description. Our qualitative and quantitative evaluations demonstrate that DiCoMoGAN significantly outperforms existing frame-based methods, producing temporally coherent and semantically more meaningful results
    corecore