41 research outputs found

    Rõivaste tekstureerimine kasutades Kinect V2.0

    Get PDF
    This thesis describes three new garment retexturing methods for FitsMe virtual fitting room applications using data from Microsoft Kinect II RGB-D camera. The first method, which is introduced, is an automatic technique for garment retexturing using a single RGB-D image and infrared information obtained from Kinect II. First, the garment is segmented out from the image using GrabCut or depth segmentation. Then texture domain coordinates are computed for each pixel belonging to the garment using normalized 3D information. Afterwards, shading is applied to the new colors from the texture image. The second method proposed in this work is about 2D to 3D garment retexturing where a segmented garment of a manikin or person is matched to a new source garment and retextured, resulting in augmented images in which the new source garment is transferred to the manikin or person. The problem is divided into garment boundary matching based on point set registration which uses Gaussian mixture models and then interpolate inner points using surface topology extracted through geodesic paths, which leads to a more realistic result than standard approaches. The final contribution of this thesis is by introducing another novel method which is used for increasing the texture quality of a 3D model of a garment, by using the same Kinect frame sequence which was used in the model creation. Firstly, a structured mesh must be created from the 3D model, therefore the 3D model is wrapped to a base model with defined seams and texture map. Afterwards frames are matched to the newly created model and by process of ray casting the color values of the Kinect frames are mapped to the UV map of the 3D model

    Tracking and Retexturing Cloth for RealTime Virtual Clothing Applications

    Get PDF
    Abstract. In this paper, we describe a dynamic texture overlay method from monocular images for real-time visualization of garments in a virtual mirror environment. Similar to looking into a mirror when trying on clothes, we create the same impression but for virtually textured garments. The mirror is replaced by a large display that shows the mirrored image of a camera capturing e.g. the upper body part of a person. By estimating the elastic deformations of the cloth from a single camera in the 2D image plane and recovering the illumination of the textured surface of a shirt in real time, an arbitrary virtual texture can be realistically augmented onto the moving garment such that the person seems to wear the virtual clothing. The result is a combination of the real video and the new augmented model yielding a realistic impression of the virtual piece of cloth

    CNN based Learning using Reflection and Retinex Models for Intrinsic Image Decomposition

    Get PDF
    Most of the traditional work on intrinsic image decomposition rely on deriving priors about scene characteristics. On the other hand, recent research use deep learning models as in-and-out black box and do not consider the well-established, traditional image formation process as the basis of their intrinsic learning process. As a consequence, although current deep learning approaches show superior performance when considering quantitative benchmark results, traditional approaches are still dominant in achieving high qualitative results. In this paper, the aim is to exploit the best of the two worlds. A method is proposed that (1) is empowered by deep learning capabilities, (2) considers a physics-based reflection model to steer the learning process, and (3) exploits the traditional approach to obtain intrinsic images by exploiting reflectance and shading gradient information. The proposed model is fast to compute and allows for the integration of all intrinsic components. To train the new model, an object centered large-scale datasets with intrinsic ground-truth images are created. The evaluation results demonstrate that the new model outperforms existing methods. Visual inspection shows that the image formation loss function augments color reproduction and the use of gradient information produces sharper edges. Datasets, models and higher resolution images are available at https://ivi.fnwi.uva.nl/cv/retinet.Comment: CVPR 201

    New editing techniques for video post-processing

    Get PDF
    This thesis contributes to capturing 3D cloth shape, editing cloth texture and altering object shape and motion in multi-camera and monocular video recordings. We propose a technique to capture cloth shape from a 3D scene flow by determining optical flow in several camera views. Together with a silhouette matching constraint we can track and reconstruct cloth surfaces in long video sequences. In the area of garment motion capture, we present a system to reconstruct time-coherent triangle meshes from multi-view video recordings. Texture mapping of the acquired triangle meshes is used to replace the recorded texture with new cloth patterns. We extend this work to the more challenging single camera view case. Extracting texture deformation and shading effects simultaneously enables us to achieve texture replacement effects for garments in monocular video recordings. Finally, we propose a system for the keyframe editing of video objects. A color-based segmentation algorithm together with automatic video inpainting for filling in missing background texture allows us to edit the shape and motion of 2D video objects. We present examples for altering object trajectories, applying non-rigid deformation and simulating camera motion.In dieser Dissertation stellen wir Beiträge zur 3D-Rekonstruktion von Stoffoberfächen, zum Editieren von Stofftexturen und zum Editieren von Form und Bewegung von Videoobjekten in Multikamera- und Einkamera-Aufnahmen vor. Wir beschreiben eine Methode für die 3D-Rekonstruktion von Stoffoberflächen, die auf der Bestimmung des optischen Fluß in mehreren Kameraansichten basiert. In Kombination mit einem Abgleich der Objektsilhouetten im Video und in der Rekonstruktion erhalten wir Rekonstruktionsergebnisse für längere Videosequenzen. Für die Rekonstruktion von Kleidungsstücken beschreiben wir ein System, das zeitlich kohärente Dreiecksnetze aus Multikamera-Aufnahmen rekonstruiert. Mittels Texturemapping der erhaltenen Dreiecksnetze wird die Stofftextur in der Aufnahme mit neuen Texturen ersetzt. Wir setzen diese Arbeit fort, indem wir den anspruchsvolleren Fall mit nur einer einzelnen Videokamera betrachten. Um realistische Resultate beim Ersetzen der Textur zu erzielen, werden sowohl Texturdeformationen durch zugrundeliegende Deformation der Oberfläche als auch Beleuchtungseffekte berücksichtigt. Im letzten Teil der Dissertation stellen wir ein System zum Editieren von Videoobjekten mittels Keyframes vor. Dies wird durch eine Kombination eines farbbasierten Segmentierungsalgorithmus mit automatischem Auffüllen des Hintergrunds erreicht, wodurch Form und Bewegung von 2D-Videoobjekten editiert werden können. Wir zeigen Beispiele für editierte Objekttrajektorien, beliebige Deformationen und simulierte Kamerabewegung

    Live Intrinsic Video

    Get PDF

    Augmented reality for non-rigid surfaces

    Get PDF
    Augmented Reality (AR) is the process of integrating virtual elements in reality, often by mixing computer graphics into a live video stream of a real scene. It requires registration of the target object with respect to the cameras. To this end, some approaches rely on dedicated hardware, such as magnetic trackers or infra-red cameras, but they are too expensive and cumbersome to reach a large public. Others are based on specifically designed markers which usually look like bar-codes. However, they alter the look of objects to be augmented, thereby hindering their use in application for which visual design matters. Recent advances in Computer Vision have made it possible to track and detect objects by relying on natural features. However, no such method is commonly used in the AR community, because the maturity of available packages is not sufficient yet. As far as deformable surfaces are concerned, the choice is even more limited, mainly because initialization is so difficult. Our main contribution is therefore a new AR framework that can properly augment deforming surfaces in real-time. Its target platform is a standard PC and a single webcam. It does not require any complex calibration procedure, making it perfectly suitable for novice end-users. To satisfy to the most demanding application designers, our framework does not require any scene engineering, renders virtual objects illuminated by real light, and let real elements occlude virtual ones. To meet this challenge, we developed several innovative techniques. Our approach to real-time registration of a deforming surface is based on wide-baseline feature matching. However, traditional outlier elimination techniques such as RANSAC are unable to handle the non-rigid surface's large number of degrees of freedom. We therefore proposed a new robust estimation scheme that allows both 2–D and 3–D non-rigid surface registration. Another issue of critical importance in AR to achieve realism is illumination handling, for which existing techniques often require setup procedures or devices such as reflective spheres. By contrast, our framework includes methods to estimate illumination for rendering purposes without sacrificing ease of use. Finally, several existing approaches to handling occlusions in AR rely on multiple cameras or can only deal with occluding objects modeled beforehand. Our requires only one camera and models occluding objects at runtime. We incorporated these components in a consistent and flexible framework. We used it to augment many different objects such as a deforming T-shirt or a sheet of paper, under challenging conditions, in real-time, and with correct handling of illumination and occlusions. We also used our non-rigid surface registration technique to measure the shape of deformed sails. We validated the ease of deployment of our framework by distributing a software package and letting an artist use it to create two AR applications

    Recovering refined surface normals for relighting clothing in dynamic scenes

    Get PDF
    In this paper we present a method to relight captured 3D video sequences of non-rigid, dynamic scenes, such as clothing of real actors, reconstructed from multiple view video. A view-dependent approach is introduced to refine an initial coarse surface reconstruction using shape-from-shading to estimate detailed surface normals. The prior surface approximation is used to constrain the simultaneous estimation of surface normals and scene illumination, under the assumption of Lambertian surface reflectance. This approach enables detailed surface normals of a moving non-rigid object to be estimated from a single image frame. Refined normal estimates from multiple views are integrated into a single surface normal map. This approach allows highly non-rigid surfaces, such as creases in clothing, to be relit whilst preserving the detailed dynamics observed in video
    corecore