7 research outputs found

    Automatic Nested Loop Acceleration on FPGAs Using Soft CGRA Overlay

    Get PDF
    Session 1: HLS Toolingpostprin

    A Hybrid Partially Reconfigurable Overlay Supporting Just-In-Time Assembly of Custom Accelerators on FPGAs

    Get PDF
    The state of the art in design and development flows for FPGAs are not sufficiently mature to allow programmers to implement their applications through traditional software development flows. The stipulation of synthesis as well as the requirement of background knowledge on the FPGAs\u27 low-level physical hardware structure are major challenges that prevent programmers from using FPGAs. The reconfigurable computing community is seeking solutions to raise the level of design abstraction at which programmers must operate, and move the synthesis process out of the programmers\u27 path through the use of overlays. A recent approach, Just-In-Time Assembly (JITA), was proposed that enables hardware accelerators to be assembled at runtime, all from within a traditional software compilation flow. The JITA approach presents a promising path to constructing hardware designs on FPGAs using pre-synthesized parallel programming patterns, but suffers from two major limitations. First, all variant programming patterns must be pre-synthesized. Second, conditional operations are not supported. In this thesis, I present a new reconfigurable overlay, URUK, that overcomes the two limitations imposed by the JITA approach. Similar to the original JITA approach, the proposed URUK overlay allows hardware accelerators to be constructed on FPGAs through software compilation flows. To this basic capability, URUK adds additional support to enable the assembly of presynthesized fine-grained computational operators to be assembled within the FPGA. This thesis provides analysis of URUK from three different perspectives; utilization, performance, and productivity. The analysis includes comparisons against High-Level Synthesis (HLS) and the state of the art approach to creating static overlays. The tradeoffs conclude that URUK can achieve approximately equivalent performance for algebra operations compared to HLS custom accelerators, which are designed with simple experience on FPGAs. Further, URUK shows a high degree of flexibility for runtime placement and routing of the primitive operations. The analysis shows how this flexibility can be leveraged to reduce communication overhead among tiles, compared to traditional static overlays. The results also show URUK can enable software programmers without any hardware skills to create hardware accelerators at productivity levels consistent with software development and compilation

    Description and Specialization of Coarse-grained Reconfigurable Architectures

    Get PDF
    The functionality of electronic embedded systems, such as mobile phones and digital cameras, becomes more complex at each product generation. This increasing complexity implies great challenges at the design phase of these devices, as designers have to deal with high performance and low energy requirements at a low production budget. In the last years, coarse-grained, dynamically reconfigurable computer systems have increasingly gain in importance as an alternative to cope with these challenges because they provide an optimal trade-off between flexibility-after-production and performance. Like generic purpose processors, coarse-grained reconfigurable systems can be quickly reprogrammed to perform new tasks, but they keep their performance and energy consumption near to ASIC standards. The design of coarse-grained reconfigurable processors is the main theme in this work. In the first part of this dissertation, I present a new architecture description language that was designed for the description of coarse-grained, reconfigurable systems. This language allows an efficient specification of processor arrays and the description of scalable interconnection networks. The second part of this dissertation investigates the specialization of coarse-grained reconfigurable processors towards an application domain by using custom instruction sets. This work presents methods, techniques, and tools to recognize and extract clusters of operations from a set of application. These clusters serve as patterns for the design of an optimal custom instruction set. Experiments and results are presented, which analyze and assess the impact of custom instructions on coarse-grained processor arrays.Die Funktionalität eingebetteter Systeme wie Mobiltelefone und digitale Foto-Kameras wird zunehmend umfangreicher und bürdet dem Entwurf dieser Geräte hohe Herausforderungen auf, wie z.B. hohe Ausführungsgeschwindigkeit, niedrige Herstellungskosten und geringeren Energieverbrauch. Um diese Herausforderungen zu bewältigen, gewinnen grobgranulare dynamische rekonfigurierbare Rechnersysteme schnell an Bedeutung, denn sie bieten einen optimalen trade-off zwischen Flexibilität nach der Herstellung und Performanz. Wie allgemeine Prozessoren, können grobgranulare rekonfigurierbare Systeme während der Ausführungszeit schnell umprogrammiert werden, um neue Funktionalitäten auszuführen, behalten aber immer noch eine ASIC-ähnliche Performanz und Verlustleistungsverbrauch. Der Entwurf grobgranularer rekonfigurierbarer Bausteine ist das Thema dieser Dissertation. Im ersten Teil dieser Dissertation wird eine Sprache vorgestellt, die für die Beschreibung grobgranularer rekonfigurierbarer Systeme entwickelt wurde. Diese Sprache ermöglicht eine effiziente Spezifikation von Prozessoren-Arrays und die Beschreibung skalierbarer Netzwerkverbindungen. Der zweite Teil untersucht die Anpassung grobgranularer rekonfigurierbarer Bausteine an Anwendungssätze mittels spezialisierter Befehle. Methoden werden vorgestellt zur Erkennung und Extraktion von Operationsmustern aus einem Anwendungssatz. Diese Operationsmuster dienen dann zum Entwurf eines optimalen spezialisierten Befehlsatzes. Als Ergebnisse werden die Wirkungen von spezialisierten Befehlsätzen in grobgranularen Arrays analysiert und bewertet

    Metoda projektovanja namenskih programabilnih hardverskih akceleratora

    Get PDF
    Namenski računarski sistemi se najčesće projektuju tako da mogu da podrže izvršavanje većeg broja željenih aplikacija. Za postizanje što veće efikasnosti, preporučuje se korišćenje specijalizovanih procesora Application Specific Instruction Set Processors–ASIPs, na kojima se izvršavanje programskih instrukcija obavlja u za to projektovanim i nezavisnimhardverskim blokovima (akceleratorima). Glavni razlog za postojanje nezavisnih akceleratora jeste postizanjemaksimalnog ubrzanja izvršavanja instrukcija. Me ¯ dutim, ovakav pristup podrazumeva da je za svaki od blokova potrebno projektovati integrisano (ASIC) kolo, čime se bitno povećava ukupna površina procesora. Metod za smanjenje ukupne površine jeste primena DatapathMerging tehnike na dijagrame toka podataka ulaznih aplikacija. Kao rezultat, dobija se jedan programabilni hardverski akcelerator, sa mogućnosću izvršavanja svih željenih instrukcija. Međutim, ovo ima negativne posledice na efikasnost sistema. često se zanemaruje činjenica da, usled veoma ograničene fleksibilnosti ASIC hardverskih akceleratora, specijalizovani procesori imaju i drugih nedostataka. Naime, u slučaju izmena, ili prosto nadogradnje, specifikacije procesora u završnimfazama projektovanja, neizbežna su velika kašnjenja i dodatni troškovi promene dizajna. U ovoj tezi je pokazano da zahtevi za fleksibilnošću i efikasnošću ne moraju biti međusobno isključivi. Demonstrirano je je da je moguce uneti ograničeni nivo fleksibilnosti hardvera tokom dizajn procesa, tako da dobijeni hardverski akcelerator može da izvršava ne samo aplikacije definisane na samom početku projektovanja, već i druge aplikacije, pod uslovom da one pripadaju istom domenu. Drugim rečima, u tezi je prezentovana metoda projektovanja fleksibilnih namenskih hardverskih akceleratora. Eksperimentalnom evaluacijom pokazano je da su tako dobijeni akceleratori u većini slučajeva samo do 2 x veće površine ili 2 x većeg kašnjenja od akceleratora dobijenih primenom DatapathMerging metode, koja pritom ne pruža ni malo dodatne fleksibilnosti.Typically, embedded systems are designed to support a limited set of target applications. To efficiently execute those applications, they may employ Application Specific Instruction Set Processors (ASIPs) enriched with carefully designed Instructions Set Extension (ISEs) implemented in dedicated hardware blocks. The primary goal when designing ISEs is efficiency, i.e. the highest possible speedup, which implies synthesizing all critical computational kernels of the application dataflow graphs as an Application Specific Integrated Circuit (ASICs). Yet, this can lead to high on-chip area dedicated solely to ISEs. One existing approach to decrease this area by paying a reasonable price of decreased efficiency is to perform datapath merging on input dataflow graphs (DFGs) prior to generating the ASIC. It is often neglected that even higher costs can be accidentally incurred due to the lack of flexibility of such ISEs. Namely, if late design changes or specification upgrades happen, significant time-to-market delays and nonrecurrent costs for redesigning the ISEs and the corresponding ASIPs become inevitable. This thesis shows that flexibility and efficiency are not mutually exclusive. It demonstrates that it is possible to introduce a limited amount of hardware flexibility during the design process, such that the resulting datapath is in fact reconfigurable and thus can execute not only the applications known at design time, but also other applications belonging to the same application-domain. In other words, it proposes a methodology for designing domain-specific reconfigurable arrays out of a limited set of input applications. The experimental results show that resulting arrays are usually around 2£ larger and 2£ slower than ISEs synthesized using datapath merging, which have practically null flexibility beyond the design set of DFGs

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Retargetable automatic generation of compound instructions for CGRA based reconfigurable processor applications

    No full text

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore