152 research outputs found

    05101 Abstracts Collection -- Scheduling for Parallel Architectures: Theory, Applications, Challenges

    Get PDF
    From 06.03.05 to 11.03.05, the Dagstuhl Seminar 05101 ``Scheduling for Parallel Architectures: Theory, Applications, Challenges\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    Automatic C Compiler Generation from Architecture Description Language ISAC

    Get PDF
    This paper deals with retargetable compiler generation. After an introduction to application-specific instruction set processor design and a review of code generation in compiler backends, ISAC architecture description language is introduced. Automatic approach to instruction semantics extraction from ISAC models which result is usable for backend generation is presented. This approach was successfully tested on three models of MIPS, ARM and TI MSP430 architectures. Further backend generation process that uses extracted instruction is semantics presented. This process was currently tested on the MIPS architecture and some preliminary results are shown

    Mitigating smart card fault injection with link-time code rewriting: a feasibility study

    Get PDF
    We present a feasibility study to protect smart card software against fault-injection attacks by means of binary code rewriting. We implemented a range of protection techniques in a link-time rewriter and evaluate and discuss the obtained coverage, the associated overhead and engineering effort, as well as its practical usability

    FSMD-Based Hardware Accelerators for FPGAs

    Get PDF
    Current VLSI technology allows the design of sophisticated digital systems with escalated demands in performance and power/energy consumption. The annual increase of chip complexity is 58%, while human designers productivity increase is limited to 21 % per annum (ITRS, 2011). The growing technology-productivity gap is probably the most importan

    Approaching Retargetable Static, Dynamic, and Hybrid Executable-Code Analysis

    Get PDF
    Program comprehension and reverse engineering are two large domains of computer science that have one common goal – analysis of existing programs and understanding their behaviour. In present, methods of source code analysis are well established and used in practice by software engineers. On the other hand, analysis of executable code is a more challenging task that is not fully covered by existing tools. Furthermore, methods of retargetable executable code analysis are rare because of their complexity. In this paper, we present a complex platform independent toolchain for executable-code analysis that supports both static and dynamic analysis. This toolchain, developed within the Lissom project, exploits several previously designed methods and it can be used for debugging user’s applications as well as malware analysis, etc. The main contribution of this paper is to interconnect the existing methods and illustrate their usage on the real world scenarios. Furthermore, we introduce a concept of a new retargetable method – the hybrid analysis. It can eliminate the shortcomings of the static and dynamic analysis in future

    Link-time smart card code hardening

    Get PDF
    This paper presents a feasibility study to protect smart card software against fault-injection attacks by means of link-time code rewriting. This approach avoids the drawbacks of source code hardening, avoids the need for manual assembly writing, and is applicable in conjunction with closed third-party compilers. We implemented a range of cookbook code hardening recipes in a prototype link-time rewriter and evaluate their coverage and associated overhead to conclude that this approach is promising. We demonstrate that the overhead of using an automated link-time approach is not significantly higher than what can be obtained with compile-time hardening or with manual hardening of compiler-generated assembly code

    Automated Analysis of ARM Binaries using the Low-Level Virtual Machine Compiler Framework

    Get PDF
    Binary program analysis is a critical capability for offensive and defensive operations in Cyberspace. However, many current techniques are ineffective or time-consuming and few tools can analyze code compiled for embedded processors such as those used in network interface cards, control systems and mobile phones. This research designs and implements a binary analysis system, called the Architecture-independent Binary Abstracting Code Analysis System (ABACAS), which reverses the normal program compilation process, lifting binary machine code to the Low-Level Virtual Machine (LLVM) compiler\u27s intermediate representation, thereby enabling existing security-related analyses to be applied to binary programs. The prototype targets ARM binaries but can be extended to support other architectures. Several programs are translated from ARM binaries and analyzed with existing analysis tools. Programs lifted from ARM binaries are an average of 3.73 times larger than the same programs compiled from a high-level language (HLL). Analysis results are equivalent regardless of whether the HLL source or ARM binary version of the program is submitted to the system, confirming the hypothesis that LLVM is effective for binary analysis

    Enhancement of Decompilation Results

    Get PDF
    V rámci projektu Lissom je vyvíjen rekonfigurovatelný zpětný překladač, jehož cílem je umožnit zpětný překlad programů, určených pro libovolnou platformu, do libovolného vyššího programovacího jazyka. V době počátku řešení této práce nejsou jeho výsledky ideální, neboť v něm, mimo jiné, nejsou implementovány techniky využívající dodatečné informace o programu. V rámci této práce je popsáno zpětné inženýrství a zpětný překladač projektu Lissom. Jsou zde navrženy techniky využití dodatečných informací ke zlepšení a optimalizaci jeho výsledků, konkrétně se jedná o analýzu datových sekcí a získávání ladicích informací z formátu PDB. Součástí práce je zkoumání struktury a obsahu formátu PDB. Implementace analýzy datových sekcí a použití ladicích informací je zde dále popsána a na závěr jsou zhodnoceny výsledky zpětného překladu při využití těchto technik.As a part of the Lissom project, a retargetable decompiler is being developed. Its main purpose is to decompile programs for any particular microprocessor architecture into any high-level programming language. At this thesis's beginning time, its results are not optimal because the decompiler doesn't utilize all program's additional information during decompilation that can improve the results. In this thesis, reverse engineering and Lissom decompiler is described. Techniques of using additional information to enhance decompilation results are proposed. These are data section content analysis and debug information analysis (specifically the debug information in PDB format which is proprietary format). Exploration of internal PDB structure and its content is a part of this thesis. The implementation of data section analysis and debug information utilizing is described and in the end, final decompilation results are discussed.

    Efficient Code Generation in a Region-based Dynamic Binary Translator

    Get PDF
    Region-based JIT compilation operates on translation units comprising multiple basic blocks and, possibly cyclic or conditional, control flow between these. It promises to reconcile aggressive code optimisation and low compilation latency in performance-critical dynamic binary translators. Whilst various region selection schemes and isolated code optimisation techniques have been investigated it remains unclear how to best exploit such regions for efficient code generation. Complex interactions with indirect branch tables and translation caches can have adverse effects on performance if not considered carefully. In this paper we present a complete code generation strategy for a region-based dynamic binary translator, which exploits branch type and control flow profiling information to improve code quality for the common case. We demonstrate that using our code generation strategy a competitive region-based dynamic compiler can be built on top of the LLVM JIT compilation framework. For the ARM-V5T target ISA and SPEC CPU 2006 benchmarks we achieve execution rates of, on average, 867 MIPS and up to 1323 MIPS on a standard X86 host machine, outperforming state-of-the-art QEMU-ARM by delivering a speedup of 264%
    corecore