1,882 research outputs found

    Engineering News, Fall 2019

    Get PDF
    https://scholarcommons.scu.edu/eng_news/1043/thumbnail.jp

    Geosensors to Support Crop Production: Current Applications and User Requirements

    Get PDF
    Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load

    Fleets of robots for environmentally-safe pest control in agriculture

    Get PDF
    Feeding the growing global population requires an annual increase in food production. This requirement suggests an increase in the use of pesticides, which represents an unsustainable chemical load for the environment. To reduce pesticide input and preserve the environment while maintaining the necessary level of food production, the efficiency of relevant processes must be drastically improved. Within this context, this research strived to design, develop, test and assess a new generation of automatic and robotic systems for effective weed and pest control aimed at diminishing the use of agricultural chemical inputs, increasing crop quality and improving the health and safety of production operators. To achieve this overall objective, a fleet of heterogeneous ground and aerial robots was developed and equipped with innovative sensors, enhanced end-effectors and improved decision control algorithms to cover a large variety of agricultural situations. This article describes the scientific and technical objectives, challenges and outcomes achieved in three common crops

    WHOLE FARM MODELING OF PRECISION AGRICULTURE TECHNOLOGIES

    Get PDF
    This dissertation investigated farm management concerns faced by grain producers due to the acquisition of various precision agriculture technologies. The technologies evaluated in the three manuscripts included 1) auto-steer navigation, 2) automatic section control, and 3) autonomous machinery. Each manuscript utilized a multifaceted economic model in a whole-farm decision-making framework to determine the impact of precision agriculture technology on machinery management, production management, and risk management. This approach allowed for a thorough investigation into various precision agriculture technologies which helped address the relative dearth of economic studies of precision agriculture and farm management. Moreover, the research conducted on the above technologies provided a wide array of economic insight and information for researchers and developers to aid in the advancement of precision agriculture technologies. Such information included the risk management potential of auto-steer navigation and automatic section control, and the impact the technologies had on optimal production strategies. This dissertation was also able to provided information to guide engineers in the development of autonomous machinery by identifying critical characteristics and isolating the most influential operating machine. The inferences from this dissertation intend to be employed in an extension setting with the purpose of educating grain producers on the impacts of implementing such technologies

    REVIEW OF ROBOTIC TECHNOLOGY FOR STRAWBERRY PRODUCTION

    Get PDF
    With an increasing world population in need of food and a limited amount of land for cultivation, higher efficiency in agricultural production, especially fruits and vegetables, is increasingly required. The success of agricultural production in the marketplace depends on its quality and cost. The cost of labor for crop production, harvesting, and post-harvesting operations is a major portion of the overall production cost, especially for specialty crops such as strawberry. As a result, a multitude of automation technologies involving semi-autonomous and autonomous robots have been utilized, with an aim of minimizing labor costs and operation time to achieve a considerable improvement in farming efficiency and economic performance. Research and technologies for weed control, harvesting, hauling, sorting, grading, and/or packing have been generally reviewed for fruits and vegetables, yet no review has been conducted thus far specifically for robotic technology being used in strawberry production. In this article, studies on strawberry robotics and their associated automation technologies are reviewed in terms of mechanical subsystems (e.g., traveling unit, handling unit, storage unit) and electronic subsystems (e.g., sensors, computer, communication, and control). Additionally, robotic technologies being used in different stages in strawberry production operations are reviewed. The robot designs for strawberry management are also categorized in terms of purpose and environment

    Accurate GPS-free Positioning of Utility Vehicles for Specialty Agriculture

    Full text link
    • …
    corecore