44,915 research outputs found

    On the Network-Wide Gain of Memory-Assisted Source Coding

    Full text link
    Several studies have identified a significant amount of redundancy in the network traffic. For example, it is demonstrated that there is a great amount of redundancy within the content of a server over time. This redundancy can be leveraged to reduce the network flow by the deployment of memory units in the network. The question that arises is whether or not the deployment of memory can result in a fundamental improvement in the performance of the network. In this paper, we answer this question affirmatively by first establishing the fundamental gains of memory-assisted source compression and then applying the technique to a network. Specifically, we investigate the gain of memory-assisted compression in random network graphs consisted of a single source and several randomly selected memory units. We find a threshold value for the number of memories deployed in a random graph and show that if the number of memories exceeds the threshold we observe network-wide reduction in the traffic.Comment: To appear in 2011 IEEE Information Theory Workshop (ITW 2011

    Quantum channels and their entropic characteristics

    Full text link
    One of the major achievements of the recently emerged quantum information theory is the introduction and thorough investigation of the notion of quantum channel which is a basic building block of any data-transmitting or data-processing system. This development resulted in an elaborated structural theory and was accompanied by the discovery of a whole spectrum of entropic quantities, notably the channel capacities, characterizing information-processing performance of the channels. This paper gives a survey of the main properties of quantum channels and of their entropic characterization, with a variety of examples for finite dimensional quantum systems. We also touch upon the "continuous-variables" case, which provides an arena for quantum Gaussian systems. Most of the practical realizations of quantum information processing were implemented in such systems, in particular based on principles of quantum optics. Several important entropic quantities are introduced and used to describe the basic channel capacity formulas. The remarkable role of the specific quantum correlations - entanglement - as a novel communication resource, is stressed.Comment: review article, 60 pages, 5 figures, 194 references; Rep. Prog. Phys. (in press

    Entanglement cost and quantum channel simulation

    Get PDF
    This paper proposes a revised definition for the entanglement cost of a quantum channel N\mathcal{N}. In particular, it is defined here to be the smallest rate at which entanglement is required, in addition to free classical communication, in order to simulate nn calls to N\mathcal{N}, such that the most general discriminator cannot distinguish the nn calls to N\mathcal{N} from the simulation. The most general discriminator is one who tests the channels in a sequential manner, one after the other, and this discriminator is known as a quantum tester [Chiribella et al., Phys. Rev. Lett., 101, 060401 (2008)] or one who is implementing a quantum co-strategy [Gutoski et al., Symp. Th. Comp., 565 (2007)]. As such, the proposed revised definition of entanglement cost of a quantum channel leads to a rate that cannot be smaller than the previous notion of a channel's entanglement cost [Berta et al., IEEE Trans. Inf. Theory, 59, 6779 (2013)], in which the discriminator is limited to distinguishing parallel uses of the channel from the simulation. Under this revised notion, I prove that the entanglement cost of certain teleportation-simulable channels is equal to the entanglement cost of their underlying resource states. Then I find single-letter formulas for the entanglement cost of some fundamental channel models, including dephasing, erasure, three-dimensional Werner--Holevo channels, epolarizing channels (complements of depolarizing channels), as well as single-mode pure-loss and pure-amplifier bosonic Gaussian channels. These examples demonstrate that the resource theory of entanglement for quantum channels is not reversible. Finally, I discuss how to generalize the basic notions to arbitrary resource theories.Comment: 28 pages, 7 figure
    • …
    corecore