914 research outputs found

    Investigation of punctured LDPC codes and time-diversity on free-space optical links

    Get PDF
    In this paper, we analyze the behavior of DVB-S2 un-punctured/punctured low-density parity-check (LDPC) coded on-off-keying (OOK) under atmospheric turbulence conditions by utilizing time diversity. A performance characterization between these schemes is evaluated, where punctured LDPC code provides a penalty of around 0.1 to 0.2 dB against unpunctured LDPC codes but still provides a coding gain of several dB against uncoded OOK. The combination of channel coding and a bit interleaver results in performance improvements in turbulence conditions. For example, such a system can achieve a coding gain of 16.7 dB in moderate turbulence conditions compared to uncoded OOK

    Optimized puncturing distributions for irregular non-binary LDPC codes

    Full text link
    In this paper we design non-uniform bit-wise puncturing distributions for irregular non-binary LDPC (NB-LDPC) codes. The puncturing distributions are optimized by minimizing the decoding threshold of the punctured LDPC code, the threshold being computed with a Monte-Carlo implementation of Density Evolution. First, we show that Density Evolution computed with Monte-Carlo simulations provides accurate (very close) and precise (small variance) estimates of NB-LDPC code ensemble thresholds. Based on the proposed method, we analyze several puncturing distributions for regular and semi-regular codes, obtained either by clustering punctured bits, or spreading them over the symbol-nodes of the Tanner graph. Finally, optimized puncturing distributions for non-binary LDPC codes with small maximum degree are presented, which exhibit a gap between 0.2 and 0.5 dB to the channel capacity, for punctured rates varying from 0.5 to 0.9.Comment: 6 pages, ISITA1

    Coding with Scrambling, Concatenation, and HARQ for the AWGN Wire-Tap Channel: A Security Gap Analysis

    Full text link
    This study examines the use of nonsystematic channel codes to obtain secure transmissions over the additive white Gaussian noise (AWGN) wire-tap channel. Unlike the previous approaches, we propose to implement nonsystematic coded transmission by scrambling the information bits, and characterize the bit error rate of scrambled transmissions through theoretical arguments and numerical simulations. We have focused on some examples of Bose-Chaudhuri-Hocquenghem (BCH) and low-density parity-check (LDPC) codes to estimate the security gap, which we have used as a measure of physical layer security, in addition to the bit error rate. Based on a number of numerical examples, we found that such a transmission technique can outperform alternative solutions. In fact, when an eavesdropper (Eve) has a worse channel than the authorized user (Bob), the security gap required to reach a given level of security is very small. The amount of degradation of Eve's channel with respect to Bob's that is needed to achieve sufficient security can be further reduced by implementing scrambling and descrambling operations on blocks of frames, rather than on single frames. While Eve's channel has a quality equal to or better than that of Bob's channel, we have shown that the use of a hybrid automatic repeat-request (HARQ) protocol with authentication still allows achieving a sufficient level of security. Finally, the secrecy performance of some practical schemes has also been measured in terms of the equivocation rate about the message at the eavesdropper and compared with that of ideal codes.Comment: 29 pages, 10 figure

    Blind Reconciliation

    Get PDF
    Information reconciliation is a crucial procedure in the classical post-processing of quantum key distribution (QKD). Poor reconciliation efficiency, revealing more information than strictly needed, may compromise the maximum attainable distance, while poor performance of the algorithm limits the practical throughput in a QKD device. Historically, reconciliation has been mainly done using close to minimal information disclosure but heavily interactive procedures, like Cascade, or using less efficient but also less interactive -just one message is exchanged- procedures, like the ones based in low-density parity-check (LDPC) codes. The price to pay in the LDPC case is that good efficiency is only attained for very long codes and in a very narrow range centered around the quantum bit error rate (QBER) that the code was designed to reconcile, thus forcing to have several codes if a broad range of QBER needs to be catered for. Real world implementations of these methods are thus very demanding, either on computational or communication resources or both, to the extent that the last generation of GHz clocked QKD systems are finding a bottleneck in the classical part. In order to produce compact, high performance and reliable QKD systems it would be highly desirable to remove these problems. Here we analyse the use of short-length LDPC codes in the information reconciliation context using a low interactivity, blind, protocol that avoids an a priori error rate estimation. We demonstrate that 2x10^3 bits length LDPC codes are suitable for blind reconciliation. Such codes are of high interest in practice, since they can be used for hardware implementations with very high throughput.Comment: 22 pages, 8 figure
    corecore