7,338 research outputs found

    A flexible framework for defeasible logics

    Get PDF
    Logics for knowledge representation suffer from over-specialization: while each logic may provide an ideal representation formalism for some problems, it is less than optimal for others. A solution to this problem is to choose from several logics and, when necessary, combine the representations. In general, such an approach results in a very difficult problem of combination. However, if we can choose the logics from a uniform framework then the problem of combining them is greatly simplified. In this paper, we develop such a framework for defeasible logics. It supports all defeasible logics that satisfy a strong negation principle. We use logic meta-programs as the basis for the framework.Comment: Proceedings of 8th International Workshop on Non-Monotonic Reasoning, April 9-11, 2000, Breckenridge, Colorad

    The Gödel and the Splitting Translations

    Full text link
    When the new research area of logic programming and non-monotonic reasoning emerged at the end of the 1980s, it focused notably on the study of mathematical relations between different non-monotonic formalisms, especially between the semantics of stable models and various non-monotonic modal logics. Given the many and varied embeddings of stable models into systems of modal logic, the modal interpretation of logic programming connectives and rules became the dominant view until well into the new century. Recently, modal interpretations are once again receiving attention in the context of hybrid theories that combine reasoning with non-monotonic rules and ontologies or external knowledge bases. In this talk I explain how familiar embeddings of stable models into modal logics can be seen as special cases of two translations that are very well-known in non-classical logic. They are, first, the translation used by Godel in 1933 to em- ¨ bed Heyting’s intuitionistic logic H into a modal provability logic equivalent to Lewis’s S4; second, the splitting translation, known since the mid-1970s, that allows one to embed extensions of S4 into extensions of the non-reflexive logic, K4. By composing the two translations one can obtain (Goldblatt, 1978) an adequate provability interpretation of H within the Goedel-Loeb logic GL, the system shown by Solovay (1976) to capture precisely the provability predicate of Peano Arithmetic. These two translations and their composition not only apply to monotonic logics extending H and S4, they also apply in several relevant cases to non-monotonic logics built upon such extensions, including equilibrium logic, non-monotonic S4F and autoepistemic logic. The embeddings obtained are not merely faithful and modular, they are based on fully recursive translations applicable to arbitrary logical formulas. Besides providing a uniform picture of some older results in LPNMR, the translations yield a perspective from which some new logics of belief emerge in a natural wa

    Semantic Matchmaking as Non-Monotonic Reasoning: A Description Logic Approach

    Full text link
    Matchmaking arises when supply and demand meet in an electronic marketplace, or when agents search for a web service to perform some task, or even when recruiting agencies match curricula and job profiles. In such open environments, the objective of a matchmaking process is to discover best available offers to a given request. We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties. Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery

    Complexity of Non-Monotonic Logics

    Full text link
    Over the past few decades, non-monotonic reasoning has developed to be one of the most important topics in computational logic and artificial intelligence. Different ways to introduce non-monotonic aspects to classical logic have been considered, e.g., extension with default rules, extension with modal belief operators, or modification of the semantics. In this survey we consider a logical formalism from each of the above possibilities, namely Reiter's default logic, Moore's autoepistemic logic and McCarthy's circumscription. Additionally, we consider abduction, where one is not interested in inferences from a given knowledge base but in computing possible explanations for an observation with respect to a given knowledge base. Complexity results for different reasoning tasks for propositional variants of these logics have been studied already in the nineties. In recent years, however, a renewed interest in complexity issues can be observed. One current focal approach is to consider parameterized problems and identify reasonable parameters that allow for FPT algorithms. In another approach, the emphasis lies on identifying fragments, i.e., restriction of the logical language, that allow more efficient algorithms for the most important reasoning tasks. In this survey we focus on this second aspect. We describe complexity results for fragments of logical languages obtained by either restricting the allowed set of operators (e.g., forbidding negations one might consider only monotone formulae) or by considering only formulae in conjunctive normal form but with generalized clause types. The algorithmic problems we consider are suitable variants of satisfiability and implication in each of the logics, but also counting problems, where one is not only interested in the existence of certain objects (e.g., models of a formula) but asks for their number.Comment: To appear in Bulletin of the EATC

    Conditionals and modularity in general logics

    Full text link
    In this work in progress, we discuss independence and interpolation and related topics for classical, modal, and non-monotonic logics

    Suszko's Problem: Mixed Consequence and Compositionality

    Full text link
    Suszko's problem is the problem of finding the minimal number of truth values needed to semantically characterize a syntactic consequence relation. Suszko proved that every Tarskian consequence relation can be characterized using only two truth values. Malinowski showed that this number can equal three if some of Tarski's structural constraints are relaxed. By so doing, Malinowski introduced a case of so-called mixed consequence, allowing the notion of a designated value to vary between the premises and the conclusions of an argument. In this paper we give a more systematic perspective on Suszko's problem and on mixed consequence. First, we prove general representation theorems relating structural properties of a consequence relation to their semantic interpretation, uncovering the semantic counterpart of substitution-invariance, and establishing that (intersective) mixed consequence is fundamentally the semantic counterpart of the structural property of monotonicity. We use those to derive maximum-rank results proved recently in a different setting by French and Ripley, as well as by Blasio, Marcos and Wansing, for logics with various structural properties (reflexivity, transitivity, none, or both). We strengthen these results into exact rank results for non-permeable logics (roughly, those which distinguish the role of premises and conclusions). We discuss the underlying notion of rank, and the associated reduction proposed independently by Scott and Suszko. As emphasized by Suszko, that reduction fails to preserve compositionality in general, meaning that the resulting semantics is no longer truth-functional. We propose a modification of that notion of reduction, allowing us to prove that over compact logics with what we call regular connectives, rank results are maintained even if we request the preservation of truth-functionality and additional semantic properties.Comment: Keywords: Suszko's thesis; truth value; logical consequence; mixed consequence; compositionality; truth-functionality; many-valued logic; algebraic logic; substructural logics; regular connective
    corecore