1,128 research outputs found

    Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    Get PDF
    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c)^2. The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q^2 the deuteron charge form factors G_C and G_Q. They are in good agreement with relativistic calculations and disagree with pQCD predictions.Comment: 5 pages, 4 figures, for associated informations, see http://isnwww.in2p3.fr/hadrons/t20/t20_ang.html clarification about several topics, one figure has been had, extraction of form factors use AQ interpolation in our Q2 range onl

    Impact of the Casimir-Polder Potential and Johnson Noise on Bose-Einstein Condensate Stability near Surfaces

    Full text link
    We investigate the stability of magnetically trapped atomic Bose-Einstein condensates and thermal clouds near the transition temperature at small distances 0.5 microns < d < 10 microns from a microfabricated silicon chip. For a 2 microns thick copper film the trap lifetime is limited by Johnson-noise induced currents and falls below 1 s at a distance of 4 microns. A dielectric surface does not adversely affect the sample until the attractive Casimir-Polder potential significantly reduces the trap depth.Comment: 4 pages, 5 figures, and submitted to Physical Review Letter

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    Aerosol Retrievals from Different Polarimeters During the ACEPOL Campaign Using a Common Retrieval Algorithm

    Get PDF
    In this paper, we present aerosol retrieval results from the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, which was a joint initiative between NASA and SRON the Netherlands Institute for Space Research. The campaign took place in OctoberNovember 2017 over the western part of the United States. During ACEPOL six different instruments were deployed on the NASA ER-2 high-altitude aircraft, including four multi-angle polarimeters (MAPs): SPEX airborne, the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI), and the Research Scanning Polarimeter (RSP). Also, two lidars participated: the High Spectral Resolution Lidar-2 (HSRL-2) and the Cloud Physics Lidar (CPL). Flights were conducted mainly for scenes with low aerosol load over land, but some cases with higher AOD were also observed. We perform aerosol retrievals from SPEX airborne, RSP (410865 nm range only), and AirMSPI using the SRON aerosol retrieval algorithm and compare the results against AERONET (AErosol RObotic NETwork) and HSRL-2 measurements (for SPEX airborne and RSP). All three MAPs compare well against AERONET for the aerosol optical depth (AOD), with a mean absolute error (MAE) between 0.014 and 0.024 at 440 nm. For the fine-mode effective radius the MAE ranges between 0.021 and 0.028 m. For the comparison with HSRL-2 we focus on a day with low AOD (0.020.14 at 532 nm) over the California Central Valley, Arizona, and Nevada (26 October) as well as a flight with high AOD (including measurements with AOD>1.0 at 532 nm) over a prescribed forest fire in Arizona (9 November). For the day with low AOD the MAEs in AOD (at 532 nm) with HSRL-2 are 0.014 and 0.022 for SPEX and RSP, respectively, showing the capability of MAPs to provide accurate AOD retrievals for the challenging case of low AOD over land. For the retrievals over the smoke plume a reasonable agreement in AOD between the MAPs and HSRL-2 was also found (MAE 0.088 and 0.079 for SPEX and RSP, respectively), despite the fact that the comparison is hampered by large spatial variability in AOD throughout the smoke plume. A good comparison is also found between the MAPs and HSRL-2 for the aerosol depolarization ratio (a measure of particle sphericity), with an MAE of 0.023 and 0.016 for SPEX and RSP, respectively. Finally, SPEX and RSP agree very well for the retrieved microphysical and optical properties of the smoke plume

    Earth observations from DSCOVR EPIC instrument

    Full text link
    The National Oceanic and Atmospheric Administration (NOAA) Deep Space Climate Observatory (DSCOVR) spacecraft was launched on 11 February 2015 and in June 2015 achieved its orbit at the first Lagrange point (L1), 1.5 million km from Earth toward the sun. There are two National Aeronautics and Space Administration (NASA) Earth-observing instruments on board: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). The purpose of this paper is to describe various capabilities of the DSCOVR EPIC instrument. EPIC views the entire sunlit Earth from sunrise to sunset at the backscattering direction (scattering angles between 168.5° and 175.5°) with 10 narrowband filters: 317, 325, 340, 388, 443, 552, 680, 688, 764, and 779 nm. We discuss a number of preprocessing steps necessary for EPIC calibration including the geolocation algorithm and the radiometric calibration for each wavelength channel in terms of EPIC counts per second for conversion to reflectance units. The principal EPIC products are total ozone (O3) amount, scene reflectivity, erythemal irradiance, ultraviolet (UV) aerosol properties, sulfur dioxide (SO2) for volcanic eruptions, surface spectral reflectance, vegetation properties, and cloud products including cloud height. Finally, we describe the observation of horizontally oriented ice crystals in clouds and the unexpected use of the O2 B-band absorption for vegetation properties.The NASA GSFC DSCOVR project is funded by NASA Earth Science Division. We gratefully acknowledge the work by S. Taylor and B. Fisher for help with the SO2 retrievals and Marshall Sutton, Carl Hostetter, and the EPIC NISTAR project for help with EPIC data. We also would like to thank the EPIC Cloud Algorithm team, especially Dr. Gala Wind, for the contribution to the EPIC cloud products. (NASA Earth Science Division)Accepted manuscrip

    Trapping ultracold atoms at 100 nm from a chip surface in a 0.7-micrometer-period magnetic lattice

    Full text link
    We report the trapping of ultracold 87Rb atoms in a 0.7 micron-period 2D triangular magnetic lattice on an atom chip. The magnetic lattice is created by a lithographically patterned magnetic Co/Pd multilayer film plus bias fields. Rubidium atoms in the F=1, mF=-1 low-field seeking state are trapped at estimated distances down to about 100 nm from the chip surface and with calculated mean trapping frequencies as high as 800 kHz. The measured lifetimes of the atoms trapped in the magnetic lattice are in the range 0.4 - 1.7 ms, depending on distance from the chip surface. Model calculations suggest the trap lifetimes are currently limited mainly by losses due to surface-induced thermal evaporation following loading of the atoms from the Z-wire trap into the very tight magnetic lattice traps, rather than by fundamental loss processes such as surface interactions, three-body recombination or spin flips due to Johnson magnetic noise. The trapping of atoms in a 0.7 micrometer-period magnetic lattice represents a significant step towards using magnetic lattices for quantum tunneling experiments and to simulate condensed matter and many-body phenomena in nontrivial lattice geometries.Comment: 11 pages, 7 figure

    The climate impacts of atmospheric aerosols using in-situ measurements, satellite retrievals and global climate model simulations

    Get PDF
    Aerosols contribute the largest uncertainty to estimates of radiative forcing of the Earth’s atmosphere, which are thought to exert a net negative radiative forcing, offsetting a potentially significant but poorly constrained fraction of the positive radiative forcing associated with greenhouse gases. Aerosols perturb the Earth’s radiative balance directly by absorbing and scattering radiation and indirectly by acting as cloud condensation nuclei, altering cloud albedo and potentially cloud lifetime. One of the major factors governing the uncertainty in estimates of aerosol direct radiative forcing is the poorly constrained aerosol single scattering albedo, which is the ratio of the aerosol scattering to extinction. In this thesis, I describe a new instrument for the measurement of aerosol optical properties using photoacoustic and cavity ring-down spectroscopy. Characterisation is performed by assessing the instrument minimum sensitivity and accuracy as well as verifying the accuracy of its calibration procedure. The instrument and calibration accuracies are assessed by comparing modelled to measured optical properties of well-characterised laboratory-generated aerosol. I then examine biases in traditional, filter-based absorption measurements by comparing to photoacoustic spectrometer absorption measurements for a range of aerosol sources at multiple wavelengths. Filter-based measurements consistently overestimate absorption although the bias magnitude is strongly source-dependent. Biases are consistently lowest when an advanced correction scheme is applied, irrespective of wavelength or aerosol source. Lastly, I assess the sensitivity of the direct radiative effect of biomass burning aerosols to aerosol and cloud optical properties over the Southeast Atlantic Ocean using a combination of offline radiative transfer modelling, satellite observations and global climate model simulations. Although the direct radiative effect depends on aerosol and cloud optical properties in a non-linear way, it appears to be only weakly dependent on sub-grid variability.Natural Environment Research CouncilMet Offic

    Aerosol Data Sources and Their Roles within PARAGON

    Get PDF
    We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal

    Robust spatial coherence 5 μ\,\mum from a room-temperature atom chip

    Full text link
    We study spatial coherence near a classical environment by loading a Bose-Einstein condensate into a magnetic lattice potential and observing diffraction. Even very close to a surface (5 μ\,\mum), and even when the surface is at room temperature, spatial coherence persists for a relatively long time (≥\ge500 \,ms). In addition, the observed spatial coherence extends over several lattice sites, a significantly greater distance than the atom-surface separation. This opens the door for atomic circuits, and may help elucidate the interplay between spatial dephasing, inter-atomic interactions, and external noise.Comment: 15 pages, 14 figures, revised for final publication. This manuscript includes in-depth analysis of the data presented in arXiv:1502.0160
    • …
    corecore