936,451 research outputs found

    Optimal Strategies in Infinite-state Stochastic Reachability Games

    Full text link
    We consider perfect-information reachability stochastic games for 2 players on infinite graphs. We identify a subclass of such games, and prove two interesting properties of it: first, Player Max always has optimal strategies in games from this subclass, and second, these games are strongly determined. The subclass is defined by the property that the set of all values can only have one accumulation point -- 0. Our results nicely mirror recent results for finitely-branching games, where, on the contrary, Player Min always has optimal strategies. However, our proof methods are substantially different, because the roles of the players are not symmetric. We also do not restrict the branching of the games. Finally, we apply our results in the context of recently studied One-Counter stochastic games

    The Shapley value for airport and irrigation games

    Get PDF
    In this paper cost sharing problems are considered. We focus on problems given by rooted trees, we call these problems cost-tree problems, and on the induced transferable utility cooperative games, called irrigation games. A formal notion of irrigation games is introduced, and the characterization of the class of these games is provided. The well-known class of airport games Littlechild and Thompson (1977) is a subclass of irrigation games. The Shapley value Shapley (1953) is probably the most popular solution concept for transferable utility cooperative games. Dubey (1982) and Moulin and Shenker (1992) show respectively, that Shapley's Shapley (1953) and Young (1985)'s axiomatizations of the Shapley value are valid on the class of airport games. In this paper we show that Dubey (1982)'s and Moulin and Shenker (1992)'s results can be proved by applying Shapley (1953)'s and Young (1985)'s proofs, that is those results are direct consequences of Shapley (1953)'s and Young (1985)'s results. Furthermore, we extend Dubey (1982)'s and Moulin and Shenker (1992)'s results to the class of irrigation games, that is we provide two characterizations of the Shapley value for cost sharing problems given by rooted trees. We also note that for irrigation games the Shapley value is always stable, that is it is always in the core Gillies (1959)

    Simple Causes of Complexity in Hedonic Games

    Full text link
    Hedonic games provide a natural model of coalition formation among self-interested agents. The associated problem of finding stable outcomes in such games has been extensively studied. In this paper, we identify simple conditions on expressivity of hedonic games that are sufficient for the problem of checking whether a given game admits a stable outcome to be computationally hard. Somewhat surprisingly, these conditions are very mild and intuitive. Our results apply to a wide range of stability concepts (core stability, individual stability, Nash stability, etc.) and to many known formalisms for hedonic games (additively separable games, games with W-preferences, fractional hedonic games, etc.), and unify and extend known results for these formalisms. They also have broader applicability: for several classes of hedonic games whose computational complexity has not been explored in prior work, we show that our framework immediately implies a number of hardness results for them.Comment: 7+9 pages, long version of a paper in IJCAI 201

    Differential games through viability theory : old and recent results.

    Get PDF
    This article is devoted to a survey of results for differential games obtained through Viability Theory. We recall the basic theory for differential games (obtained in the 1990s), but we also give an overview of recent advances in the following areas : games with hard constraints, stochastic differential games, and hybrid differential games. We also discuss several applications.Game theory; Differential game; viability algorithm;
    • …
    corecore