65 research outputs found

    Distributed power generation in the United States

    Full text link
    With electricity consumption increasing within the UnitedStates, new paradigms of delivering electricity are required in order to meet demand. One promising option is the increased use of distributedpowergeneration. Already a growing percentage of electricity generation, distributedgeneration locates the power plant physically close to the consumer, avoiding transmission and distribution losses as well as providing the possibility of combined heat and power. Despite the efficiency gains possible, regulators and utilities have been reluctant to implement distributedgeneration, creating numerous technical, regulatory, and business barriers. Certain governments, most notable California, are making concerted efforts to overcome these barriers in order to ensure distributedgeneration plays a part as the country meets demand while shifting to cleaner sources of energy

    Atwater Kent Energy Study

    Get PDF
    This project explores energy consumption of Atwater Kent, by looking at ways to reduce the determined electric power consumption, and the feasibility of placing solar panels on the roof of the building

    European Energy Collaboration: Modern Smart Specialization Strategies

    Get PDF
    Враховуючи важливість енергетичного співробітництва в Європі, можливості забезпечити розвиток інфраструктури та встановити необхідні взаємозв'язки між операторами енергоресурсів, керувати потоками енергії та комунікацією між агентами загальноєвропейського енергетичного ринку, застосовувати інноваційні технології для досягнення переваг в розумній спеціалізації у роботі виділено відповідні стратегії. Існуючі енергетичні системи недостатньо оснащені для задоволення найновіших потреб користувачів за такими параметрами, як енергоефективність, надійність, економічність, відповідальність за довкілля. Враховуючи ці параметри, можна знайти майбутній вектор спеціалізації країн в енергетичній сфері. Впровадження розумних енергетичних мереж є необхідним для підвищення енергоефективності, стимулювання економічного розвитку та зростання. У зв'язку з цим формування енергетичної політики Європейського Союзу спрямоване на підвищення безпеки енергопостачання та покращення використання відновлюваної енергії за допомогою різних стимулюючих заходів, передбачених стратегіями та директивами держав-членів ЄС. На сьогодні розвинені країни трансформують свої національні стратегії з розширення відновлюваних джерел енергії у споживанні енергії у всіх секторах економіки. Енергетична політика разом із політикою енергетичної безпеки формується з урахуванням нових потреб розвитку енергетичної інфраструктури. Не всі європейські країни мають достатні запаси традиційних джерел енергії, тому існує необхідність імпорту ресурсів. З огляду на суперечки, що виникають між країнами щодо транспортування енергії, економічного та політичного втручання, європейські країни шукають стійкі джерела енергії для диверсифікації енергопостачання. Таким чином, енергетична безпека досягається за рахунок розширення споживання відновлюваної енергії, виробленої з внутрішніх або зовнішніх джерел енергії. Саме тому пріоритетним завданням є впровадження розумних технологій в енергетичному секторі, належне співробітництво та співпраця для стратегічної перебудови енергетичного ринку. У цьому напрямку все більше уваги приділяється розвитку розумних мереж як основи для майбутнього розвитку енергетичного сектору. Однак слід зазначити, що впровадження технологій інтелектуальних мереж є досить складним процесом, що вимагає глибоких досліджень та аналізу.Учитывая важность энергетического сотрудничества в Европе, возможности для обеспечения развития инфраструктуры и установления необходимых взаимосвязей между операторами энергоресурсов, для управления потоками энергии и коммуникации между участниками общеевропейского энергетического рынка, для применения инновационных технологий для достижения выгод были определены стратегии умной специализации. Существующие энергетические системы недостаточно оснащены для удовлетворения новейших потребностей пользователей по таким параметрам, как энергоэффективность, надежность, экономичность, ответственность за окружающую среду. С учетом этих параметров можно определить будущий вектор специализации стран в сфере энергетики. Развертывание интеллектуальных энергосетей необходимо для повышения энергоэффективности и стимулирования экономического развития. В связи с этим формирование энергетической политики Европейского Союза направлено на повышение безопасности энергоснабжения и улучшение использования возобновляемых источников энергии с помощью различных мер стимулирования, предусмотренных стратегиями и директивами государств-членов ЕС. В настоящее время развитые страны трансформируют свои национальные стратегии в сторону расширения использования возобновляемых источников энергии и потреблении возобновляемой энергии во всех секторах экономики. Энергетическая политика вместе с политикой энергетической безопасности формируется с учетом возникающих потребностей развития энергетической инфраструктуры. Не все европейские страны обладают достаточными запасами традиционных источников энергии, поэтому существует необходимость в импорте ресурсов. Принимая во внимание споры, возникающие между странами по поводу транспортировки энергии, экономического и политического вмешательства, европейские страны ищут устойчивые источники энергии для диверсификации поставок энергии. Таким образом, энергетическая безопасность достигается за счет увеличения потребления возобновляемой энергии, вырабатываемой из внутренних или внешних источников. Вот почему приоритетной задачей является внедрение интеллектуальных технологий в энергетическом секторе, надлежащее сотрудничество и взаимодействие для стратегической реструктуризации энергетического рынка. В этом направлении все больше внимания уделяется развитию интеллектуальных сетей как основы будущего развития энергетического сектора. Однако следует отметить, что внедрение технологий умных сетей - довольно сложный процесс, требующий глубоких исследований и анализа.Given the importance of energy cooperation and collaboration in Europe, possibilities to provide the infrastructure development and to establish the necessary interconnections between energy resource operators, to manage energy flows and communication among Pan-European energy market agents, to apply innovative technologies to achieve the benefits in smart specialization strategies are highlighted. The existing energy systems are insufficiently equipped to meet the users’ newest needs by such parameters as energy efficiency, reliability, cost-effectiveness, responsibility for the environment. Taking these parameters into account, one can find the future specialization vector of countries in the energy sphere. The deployment of smart energy grids is indispensable for improving energy efficiency, stimulating economic development and growth. In this regard, the formation of the European Union's energy policy is aimed at increasing security of energy supply and improving the renewable energy use through various incentive measures provided by the strategies and directives of EU Member States. Nowadays, developed countries are transforming their national strategies to expand renewable energy sources in energy consumption across all sectors of the economy. Energy policies, together with energy security policies, are formed to take into account the emerging needs of energy infrastructure development. Not all European countries have sufficient reserves of conventional energy sources, so there is a need to import resources. Given the controversy that arises between countries over energy transportation, economic and political interference, European countries are looking for sustainable energy sources to diversify their energy supply. Thus, energy security is achieved by expanding the consumption of renewable energy generated from internal or external energy sources. That is why the priority task is to introduce and to implement smart technologies in the energy sector, proper cooperation and collaboration for a strategic restructuring of the energy market. In this direction, more and more attention is paid to the development of smart grids as a basis for the future development of the energy sector. However, it should be noted that smart grid technologies implementation is a rather complex process that requires deep studies and analysis

    Facilitating distributed generation in Australia - the opportunities and challenges of cogeneration

    Full text link
    Stationary energy, predominately electricity and thermal energy production, is one of the largest sectors of primary energy consumption in industrialised countries. Electrification has delivered economic growth and improved standards of living while thermal energy provides comfort and sustains industrial growth. However, a range of economic, market, technological and environmental issues exist. In Australia, these include declining energy productivity and increasing energy prices, changing demand and usage patterns, accommodating emerging forms of electricity production and contribution to long-term climate change. Solutions to these issues include adoption of a mix of technical, regulatory and investmentrelated initiatives. In particular, the adoption of decentralised energy technologies, principally gas-fired cogeneration (also known as Combined Heat and Power or CHP) and solar photovoltaic (PV) appear to offer substantial technological and economic benefits over incumbent centralised technologies (especially, coal-fired generation). The adoption ofthese technologies may be enhanced by improved government incentives and regulatory reforms and a better appreciation of factors that influence the availability of investment capital. This study aims to identify the potential rate and extent of adoption of distributed generation in general and CHP in particular, by comparison with theoretical diffusion rates of other energy technologies. It seeks to expose and explore other factors which impact adoption, including supporting government policy and the need for demonstration to overcome technical risk. Finally, it examines the potential economic and environmental benefits associated with the large scale adoption of distributed energy technology. Through a mixture of literature review, analysis of a range of technical feasibility studies and a detailed case study, the extent to which distributed technologies may be adopted, and their financial, efficiency and environmental benefits are assessed. The analysis suggests that cogeneration is technically and economically feasible and is therefore a critical transition technology for the Australian stationary energy sector while distributed generation technologies in general, which are relatively mature and low risk, have the potential to substantially reduce emissions while also reducing costs and network and centralised generation investments

    Establishing a Sustainable Vision for Healthcare

    Get PDF
    Few solutions have been offered to reduce energy consumption and energy costs in hospitals. Energy efficiency measures can reduce costs overall, without impinging on patient care. Through interviews and surveys, we determined that hospitals recognize energy efficiency as a way to reduce costs, but challenges exist that inhibit progress. Recommendations are made to facilities, assisting organizations, utility companies and policymakers. This report serves as a basis for further research on how hospitals may become sustainable on a national level

    A Systems Engineering Reference Model for Fuel Cell Power Systems Development

    Get PDF
    This research was done because today the Fuel Cell (FC) Industry is still in its infancy in spite over one-hundred years of development has transpired. Although hundreds of fuel cell developers, globally have been spawned, in the last ten to twenty years, only a very few are left struggling with their New Product Development (NPD). The entrepreneurs of this type of disruptive technology, as a whole, do not have a systems engineering \u27roadmap , or template, which could guide FC technology based power system development efforts to address a more environmentally friendly power generation. Hence their probability of achieving successful commercialization is generally, quite low. Three major problems plague the fuel cell industry preventing successful commercialization today. Because of the immaturity of FC technology and, the shortage of workers intimately knowledgeable in FC technology, and the lack of FC systems engineering, process developmental knowledge, the necessity for a commercialization process model becomes evident. This thesis presents a six-phase systems engineering developmental reference model for new product development of a Solid Oxide Fuel Cell (SOFC) Power System. For this work, a stationary SOFC Power System, the subject of this study, was defined and decomposed into a subsystems hierarchy using a Part Centric Top-Down, integrated approach to give those who are familiar with SOFC Technology a chance to learn systems engineering practices. In turn, the examination of the SOFC mock-up could gave those unfamiliar with SOFC Technology a chance to learn the basic, technical fundamentals of fuel cell development and operations. A detailed description of the first two early phases of the systems engineering approach to design and development provides the baseline system engineering process details to create a template reference model for the remaining four phases. The NPD reference template model\u27s systems engineering process, philosophy and design tools are presented in great detail. Lastly, the thesi

    A Systems Engineering Reference Model for Fuel Cell Power Systems Development

    Get PDF
    This research was done because today the Fuel Cell (FC) Industry is still in its infancy in spite over one-hundred years of development has transpired. Although hundreds of fuel cell developers, globally have been spawned, in the last ten to twenty years, only a very few are left struggling with their New Product Development (NPD). The entrepreneurs of this type of disruptive technology, as a whole, do not have a systems engineering \u27roadmap , or template, which could guide FC technology based power system development efforts to address a more environmentally friendly power generation. Hence their probability of achieving successful commercialization is generally, quite low. Three major problems plague the fuel cell industry preventing successful commercialization today. Because of the immaturity of FC technology and, the shortage of workers intimately knowledgeable in FC technology, and the lack of FC systems engineering, process developmental knowledge, the necessity for a commercialization process model becomes evident. This thesis presents a six-phase systems engineering developmental reference model for new product development of a Solid Oxide Fuel Cell (SOFC) Power System. For this work, a stationary SOFC Power System, the subject of this study, was defined and decomposed into a subsystems hierarchy using a Part Centric Top-Down, integrated approach to give those who are familiar with SOFC Technology a chance to learn systems engineering practices. In turn, the examination of the SOFC mock-up could gave those unfamiliar with SOFC Technology a chance to learn the basic, technical fundamentals of fuel cell development and operations. A detailed description of the first two early phases of the systems engineering approach to design and development provides the baseline system engineering process details to create a template reference model for the remaining four phases. The NPD reference template model\u27s systems engineering process, philosophy and design tools are presented in great detail. Lastly, the thesi

    The Role of Consumers in the Adoption of Alternatively Fueled Vehicles and Mitigation of Vulnerabilities Associated with Electric Vehicle Charging

    Get PDF
    Electric vehicles have the potential to replace traditional automobiles as the primary form of transportation. Despite major improvements in technology and an expanding focus on climate change making electric vehicles more practical than ever before, consumers are still wary of adopting them for legitimate reasons such as costs and charging infrastructure. Therefore, a concerted effort must be made to persuade individuals and companies to adopt this beneficial technology to reduce the carbon footprint and catalyze the construction of important charging infrastructure. Though there are a multitude of benefits to adopting electric vehicles, there will be some negative effects on the power grid as a result of consumers adopting this new technology. To maintain and improve grid reliability, it is crucial to explore solutions to mitigate the potential effects of electric vehicles on the grid before widespread adoption occurs. Many suggested programs require customers to behave in a certain way, such as shifting their demand to off-peak times, or purchase batteries or chargers with specific capabilities. However, convincing consumers to participate in these programs is incredibly difficult, and programs such as time-of-use scheduling may only provide marginal improvements in grid conditions, like time-of-use programs. In this thesis, the benefits of electric vehicle adoption in terms of carbon reduction are observed to determine the benefit to individuals and fleet managers looking to reduce carbon emissions. Then, the effects of electric vehicles on a residential grid are explored and the impacts of time-of-use programs are analyzed. Finally, the role of the consumer in the transformation of the energy and transportation sectors is discussed with an emphasis on potential programs and incentives to persuade consumers to adopt electric vehicles and then aid in mitigating the effects of their charging systems
    corecore