3 research outputs found

    Result of the 60 tpd CO2 capture pilot plant in European coal power plant with KS-1TM solvent

    Get PDF
    AbstractMitsubishi Heavy Industries, Ltd. (MHI), in collaboration with Kansai Electric Power Co., Inc. (KEPCO), has developed and is continuing to improve upon an energy efficient chemical absorbent CO2 recovery process called the KM CDR ProcessTM that utilizes the energy-saving CO2 absorbent KS-1 TM solvent. Long term, highly successful R&D activities since 1991, have led to the rapid commercial deployment of ten (10) CO2 capture plants, with a maximum CO2 capture capacity of 450 metric tons per day (tpd). One (1) further 500 tpd commercial plant in Qatar, currently under construction, will be commissioned in 2014. These plants have been delivered exclusively to the chemical industry; in the majority of the CO2 recovery plants, CO2 is stripped from natural gas fired steam reformer flue gas and used as a feedstock which reacts with ammonia to produce urea.To ensure that the KM CDR ProcessTM and KS-1TM solvent could also be used in an environmental capacity for CCS application, the impacts of coal fired flue gas on the KM CDRTM process needed to be investigated. MHI constructed a 10 tpd demonstration plant at the Matsushima power station and operated it for more than 6,000hours until concluding the successful test in 2008. The results and knowhow gained from the Matsushima test led to the construction and operation of the world's largest coal fired flue gas carbon capture plant in Alabama, USA. Southern Company 500 tpd plant began operation in June 2011 at Alabama Power's Plant Barry; the project became the world's first fully integrated black coal CCS project when SECARB began CO2 injection in August, 2012.MHI is continuing with numerous R&D activities related to amine CO2 recovery at both Japan based R&D facilities and abroad. During 2012, MHI's overseas R&D focus has been Italy, at the 60 tpd pilot test plant located at Enel's Brindisi Power Station. The pilot plant test, utilizing KS-1TM, was conducted over two (2) months capturing up to 60 tpd of CO2 from European coal flue gas. This pilot plant is one of the biggest post combustion capture pilot plants in Europe; maximum flue gas flow of 12,000 Nm3/h, CO2 content range of 11 to 13 vol% with the flue gas pre-treated to remove SOx via wet electro filters. The pilot plant absorber column is 46m high and 1.5m in diameter, including 3 structured packing beds and a washing section.The test program aim was to optimize operation using KS-1TM, while monitoring and minimising amine emissions. Several parameters such as solvent concentration, regenerator pressure, packing height within the absorber and stripper were adjusted with a constant CO2 capture rate to determine the optimum points. The MHI test results, utilizing KS-1TM were directly compared to the pilot plant operation benchmark, 30 wt% monoethanolamine (MEA). The results showed that when compared to the benchmark, KS-1TM required considerably less specific energy, had better tolerance to oxygen and significantly lower amine emissions

    Roteiro tecnológico (roadmap) da Captação, Utilização e Armazenamento de Dióxido de Carbono (CCUS) em Portugal

    Get PDF
    O objetivo primordial deste trabalho foi estabelecer um roteiro tecnológico para aplicação das tecnologias de “Captação, Utilização e Sequestração de Carbono - CCUS” em Portugal. Para o efeito procedeu-se à identificação da origem das maiores fontes emissoras estacionárias industriais de CO2, adotando como critério o valor mínimo de 1×105 ton CO2/ano e limitado apenas ao território continental. Com base na informação recolhida e referente aos dados oficiais mais recentes (ano de 2013), estimou-se que o volume de emissões industriais de CO2 possível de captar em Portugal, corresponde a cerca de 47 % do valor global das emissões industriais, sendo oriundo de três setores de atividade industrial: produção de cimento, de pasta de papel e centrais termoelétricas a carvão. A maioria das grandes fontes emissoras industriais localiza-se no litoral do país, concentrando-se entre Aveiro e Sines. Pelas condicionantes geográficas do país e, sobretudo pela vantagem de já existir uma rede de gasodutos para o transporte de gás natural, com as respetivas infraestruturas de apoio associadas, admitiu-se que o cenário mais favorável para o transporte do CO2 captado será a criação de um sistema de transporte por gasoduto específico para o CO2. Como critério de compatibilização da proximidade das fontes emissoras de CO2 com potenciais locais para o armazenamento geológico das correntes captadas, adotou-se a distância máxima de 100 km, considerada adequada perante a dimensão do território nacional e as características do tecido industrial nacional. Efetuou-se a revisão das tecnologias de captação de CO2 disponíveis, quer comercialmente, quer em níveis avançados de demonstração e procedeu-se à análise exploratória da adequação desses diferentes métodos de captação a cada um dos setores de atividade industrial previamente identificados com emissões de CO2 suscetíveis de serem captadas. Na perspetiva da melhor integração dos processos, esta análise preliminar tomou em consideração as características das misturas gasosas, assim como o contexto industrial correspondente e o processo produtivo que lhe dá origem. As possibilidades de utilização industrial do CO2 sujeito à captação no país foram tratadas neste trabalho de forma genérica dado que a identificação de oportunidades reais para a utilização de correntes de CO2 captadas exige uma análise de compatibilização das necessidades efetivas de utilização de CO2 por parte de potenciais utilizadores industriais que carece da caracterização prévia das propriedades dessas correntes. Este é um tipo de análise muito específico que pressupõe o interesse mútuo de diferentes intervenientes: agentes emissores de CO2, operadores de transporte e, principalmente, potenciais utilizadores de CO2 como: matéria-prima para a síntese de compostos, solvente de extração supercrítica na indústria alimentar ou farmacêutica, agente corretor de pH em tratamento de efluentes, biofixação por fotossíntese, ou outra das aplicações possíveis identificadas para o CO2 captado. A última etapa deste estudo consistiu na avaliação das possibilidades de armazenamento geológico do CO2 captado e envolveu a identificação, nas bacias sedimentares nacionais, de formações geológicas com características reconhecidas como sendo boas indicações para o armazenamento de CO2 de forma permanente e em segurança. Seguiu-se a metodologia preconizada por organizações internacionais aplicando à situação nacional, critérios de seleção e de segurança que se encontram reconhecidamente definidos. A adequação para o armazenamento de CO2 das formações geológicas pré-selecionadas terá que ser comprovada por estudos adicionais que complementem os dados já existentes sobre as características geológicas destas formações e, mais importante ainda, por testes laboratoriais e ensaios de injeção de CO2 que possam fornecer informação concreta para estimar a capacidade de sequestração e de retenção de CO2 nestas formações e estabelecer os modelos geológicos armazenamento que permitam identificar e estimar, de forma concreta e objetiva, os riscos associados à injeção e armazenamento de CO2.The main objective of this thesis was to establish the Portuguese technological roadmap for Carbon Capture, Utilization and Storage – CCUS. For this purpose, the industrial stationary emission sources of CO2 in the mainland were screened using a minimum threshold of 1×105 ton CO2/year and the latest official data from 2013. Based on this information, three industrial activity sectors were identified: clinker and cement production; pulp and paper production and coal power stations, representing a total of 47 % of the global industrial CO2 emissions of the country. The great majority of the identified industrial units are situated on the coastal line of the mainland, between Aveiro and Sines. Considering the Portuguese territorial dimensions, the advantage of the already existing natural gas pipeline system and its related supporting infrastructures, the most adequate mean of transportation for the captured CO2 is, suggestingly, also pipelines, specifically built for CO2 flow. A maximal distance of 100 km, was adopted for the source-to-sink match criterion, considering the country territorial dimension and also the characteristics of the national industry. Different CO2 separation technologies were reviewed, both commercially available or at advanced demonstration stages. A preliminary basic analysis of the adequacy of the available CO2 separation technologies for each industrial activity sector, previously identified as suitable for CO2 capture, was performed. This exploratory analysis took into consideration, among other factors, the CO2 source type, the industrial origin of the CO2 source and its characteristics, pursuing the objective of achieving the best integration of the capture technology and the industrial processes. The usage of captured CO2 offers the possibility of capture costs abatement, however, the identification of CO2 utilization opportunities also demands a source-to-use match involving different stakeholders in the CCUS chain: CO2 emitters, transport operators and finally the final CO2 users. In the perspective of CO2 utilization, specifications for CO2 captured flows may vary significantly with its final destination: as a raw material for chemical synthesis processes, as a solvent for supercritical extraction in food and pharmaceutical industry, as a neutralizing agent for effluent treatment or for biofixation in photosynthetic processes. The last stage of this study was dedicated to screening suitable geologic formation for the permanent and safe CO2 storage, targeting the national sedimentary basins. This screening process followed the acknowledged international methodology that was adapted for the Portuguese intrinsic constraints. The suitability of the pre-selected geological formations has to be confirmed by further geological studies, specifically by laboratorial analysis and most importantly by CO2 injection tests performed with deep samples collected at the real conditions and at proper depths, simulating the conditions in the geologic formation. Only with these further studies, analysis and injection tests will be possible to gather sufficient and reliable information on the geologic formation target as a CO2 reservoir that will make possible building its model. The reservoir model is of the most importance, as it allows the identification and evaluation of specific risks associated with CO2 injection and storage processes
    corecore