1,134 research outputs found

    Preliminary candidate advanced avionics system for general aviation

    Get PDF
    An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered

    In-flight maintenance study Final report

    Get PDF
    Sample system analysis, MF requirements, redesign, and packaging desig

    Feasibility study for a numerical aerodynamic simulation facility. Volume 1

    Get PDF
    A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Testability and redundancy techniques for improved yield and reliability of CMOS VLSI circuits

    Get PDF
    The research presented in this thesis is concerned with the design of fault-tolerant integrated circuits as a contribution to the design of fault-tolerant systems. The economical manufacture of very large area ICs will necessitate the incorporation of fault-tolerance features which are routinely employed in current high density dynamic random access memories. Furthermore, the growing use of ICs in safety-critical applications and/or hostile environments in addition to the prospect of single-chip systems will mandate the use of fault-tolerance for improved reliability. A fault-tolerant IC must be able to detect and correct all possible faults that may affect its operation. The ability of a chip to detect its own faults is not only necessary for fault-tolerance, but it is also regarded as the ultimate solution to the problem of testing. Off-line periodic testing is selected for this research because it achieves better coverage of physical faults and it requires less extra hardware than on-line error detection techniques. Tests for CMOS stuck-open faults are shown to detect all other faults. Simple test sequence generation procedures for the detection of all faults are derived. The test sequences generated by these procedures produce a trivial output, thereby, greatly simplifying the task of test response analysis. A further advantage of the proposed test generation procedures is that they do not require the enumeration of faults. The implementation of built-in self-test is considered and it is shown that the hardware overhead is comparable to that associated with pseudo-random and pseudo-exhaustive techniques while achieving a much higher fault coverage through-the use of the proposed test generation procedures. The consideration of the problem of testing the test circuitry led to the conclusion that complete test coverage may be achieved if separate chips cooperate in testing each other's untested parts. An alternative approach towards complete test coverage would be to design the test circuitry so that it is as distributed as possible and so that it is tested as it performs its function. Fault correction relies on the provision of spare units and a means of reconfiguring the circuit so that the faulty units are discarded. This raises the question of what is the optimum size of a unit? A mathematical model, linking yield and reliability is therefore developed to answer such a question and also to study the effects of such parameters as the amount of redundancy, the size of the additional circuitry required for testing and reconfiguration, and the effect of periodic testing on reliability. The stringent requirement on the size of the reconfiguration logic is illustrated by the application of the model to a typical example. Another important result concerns the effect of periodic testing on reliability. It is shown that periodic off-line testing can achieve approximately the same level of reliability as on-line testing, even when the time between tests is many hundreds of hours

    Wafer-scale integration of semiconductor memory.

    Get PDF
    This work is directed towards a study of full-slice or "wafer-scale integrated" - semiconductor memory. Previous approaches to full slice technology are studied and critically compared. It is shown that a fault-tolerant, fixed-interconnection approach offers many advantages; such a technique forms the basis of the experimental work. The disadvantages of the conventional technology are reviewed to illustrate the potential improvements in cost, packing density and reliability obtainable with wafer-scale integration (W.S.l). Iterative chip arrays are modelled by a pseudorandom fault distribution; algorithms to control the linking of adjacent good - chips into linear chains are proposed and investigated by computer simulation. It is demonstrated that long chains may be produced at practicable yield levels. The on-chip control circuitry and the external control electronics required to implement one particular algorithm are described in relation to a TTL simulation of an array of 4 X 4 integrated circuit chips. A layout of the on-chip control logic is shown to require (in 40 dynamic MOS circuitry) an area equivalent to ~250 shift register stages -a reasonable overhead on large memories. Structures are proposed to extend the fixed-interconnection, fault-tolerant concept to parallel/serial organised memory - covering RAM, ROM and Associative Memory applications requiring up to~ 2M bits of storage. Potential problem areas in implementing W.S.I are discussed and it is concluded that current technology is capable of manufacturing such devices. A detailed cost comparison of the conventional and W.S.I approaches to large serial memories illustrates the potential savings available with wafer-scale integration. The problem of gaining industrial acceptance for W.S.I is discussed in relation to known and anticipated views- of new technology. The thesis concludes with suggestions for further work in the general field of wafer-scale integration

    Self-organising techniques for tolerating faults in 2-dimensional processor arrays

    Get PDF
    This thesis is concerned with research into techniques for tolerating the defects which inevitably occur in integrated circuits during processing. The research is motivated by the desire to permit the fabrication of very large (> 1cm²) integrated circuits having a viable yield, using standard chip processing lines. Attention is focussed on 2-dimensional arrays of identical processing elements with nearest-neighbour, orthogonal interconnections, and techniques for configuring such arrays in the presence of faults are investigated. In particular, novel algorithms based on the concept of self-organisation are proposed and studied in detail. The algorithms involve associating a small amount of control logic with each processing element in the array. The extra logic allows the processing elements to communicate with each other and come to a collective decision about how working processors should best be interconnected. The concept has been studied in considerable depth and the implications of the algorithms in a practical system have been thoroughly considered and demonstrated by construction of a small array at printed circuit board level, complete with software controlled testing procedures. The thesis can be considered in four main parts as follows. The first part (chapters 1 to 4) starts by presenting the objectives of the research and then motivates it by examining the increasing need for processor arrays. The difficulty of implementing such arrays as monolithic circuits due to integrated circuit defects is then considered. This is followed by a review of published work on hardware fault tolerance for regular arrays of processors. The second part (chapters 5 and 6) is devoted to the concept of self-organisation in processor arrays and includes a detailed description and evaluation of the algorithms followed by a comparison with other published techniques. Considerations such as hardware requirements and overheads, reducing the vulnerability of critical circuitry, self-testing, and the construction of the demonstrator are covered in the third part (chapters 7 to 10). The fourth part (chapters 11 and 12) considers potential applications for the research in both monolithic and non-monolithic systems. Finally, the conclusions and some suggestions for further work are presented

    Study of solar array switching power management technology for space power system

    Get PDF
    This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts which could satisfy the mission requirements were identified. The switching concepts were compared with a conventional buck regulator system for cost, weight and volume, reliability, efficiency and thermal control. Solar array switching provided significant advantages in all areas of comparison for the reviewed missions
    corecore