55 research outputs found

    Extreme Learning Machine-Based Diagnostics for Component Degradation in a Microturbine

    Get PDF
    Micro turbojets are used for propelling radio-controlled aircraft, aerial targets, and personal air vehicles. When compared to full-scale engines, they are characterized by relatively low efficiency and durability. In this context, the degraded performance of gas path components could lead to an unacceptable reduction in the overall engine performance. In this work, a data-driven model based on a conventional artificial neural network (ANN) and an extreme learning machine (ELM) was used for estimating the performance degradation of the micro turbojet. The training datasets containing the performance data of the engine with degraded components were generated using the validated GSP model and the Monte Carlo approach. In particular, compressor and turbine performance degradation were simulated for three different flight regimes. It was confirmed that component degradation had a similar impact in flight than at sea level. Finally, the datasets were used in the training and testing process of the ELM algorithm with four different input vectors. Two vectors had an extensive number of virtual sensors, and the other two were reduced to just fuel flow and exhaust gas temperature. Even with the small number of sensors, the high prediction accuracy of ELM was maintained for takeoff and cruise but was slightly worse for variable flight conditions

    DEEP ADVERSARIAL APPROACHES IN RELIABILITY

    Get PDF
    Reliability engineering has long been proposed with the problem of predicting failures using all available data. As modeling techniques have become more sophisticated, so too have the data sources from which reliability engineers can draw conclusions. The Internet of Things (IoT) and cheap sensing technologies have ushered in a new expansive set of multi-dimensional big machinery data in which previous reliability engineering modeling techniques remain ill-equipped to handle. Therefore, the objective of this dissertation is to develop and advance reliability engineering research by proposing four comprehensive deep learning methodologies to handle these big machinery data sets. In this dissertation, a supervised fault diagnostic deep learning approach with applications to the rolling element bearings incorporating a deep convolutional neural network on time-frequency images was developed. A semi-supervised generative adversarial networks-based approach to fault diagnostics using the same time-frequency images was proposed. The time-frequency images were used again in the development of an unsupervised generative adversarial network-based methodology for fault diagnostics. Finally, to advance the studies of remaining useful life prediction, a mathematical formulation and subsequent methodology to combine variational autoencoders and generative adversarial networks within a state-space modeling framework to achieve both unsupervised and semi-supervised remaining useful life estimation was proposed. All four proposed contributions showed state of the art results for both fault diagnostics and remaining useful life estimation. While this research utilized publicly available rolling element bearings and turbofan engine data sets, this research is intended to be a comprehensive approach such that it can be applied to a data set of the engineer’s chosen field. This research highlights the potential for deep learning-based approaches within reliability engineering problems

    A Novel Data-Driven Fault Tree Methodology for Fault Diagnosis and Prognosis

    Get PDF
    RÉSUMÉ : La thèse développe une nouvelle méthodologie de diagnostic et de pronostic de défauts dans un système complexe, nommée Interpretable logic tree analysis (ILTA), qui combine les techniques d’extraction de connaissances à partir des bases de données « knowledge discovery in database (KDD) » et l’analyse d’arbre de défaut « fault tree analysis (FTA) ». La méthodologie capitalise les avantages des deux techniques pour appréhender la problématique de diagnostic et de pronostic de défauts. Bien que les arbres de défauts offrent des modèles interprétables pour déterminer les causes possibles à l’origine d’un défaut, leur utilisation pour le diagnostic de défauts dans un système industriel est limitée, en raison de la nécessité de faire appel à des connaissances expertes pour décrire les relations de cause-à-effet entre les processus internes du système. Cependant, il sera intéressant d’exploiter la puissance d’analyse des arbres de défaut mais construit à partir des connaissances explicites et non biaisées extraites directement des bases de données sur la causalité des fautes. Par conséquent, la méthodologie ILTA fonctionne de manière analogue à la logique du modèle d'analyse d'arbre de défaut (FTA) mais avec une implication minimale des experts. Cette approche de modélisation doit rejoindre la logique des experts pour représenter la structure hiérarchique des défauts dans un système complexe. La méthodologie ILTA est appliquée à la gestion des risques de défaillance en fournissant deux modèles d'arborescence avancés interprétables à plusieurs niveaux (MILTA) et au cours du temps (ITCA). Le modèle MILTA est conçu pour accomplir la tâche de diagnostic de défaillance dans les systèmes complexes. Il est capable de décomposer un défaut complexe et de modéliser graphiquement sa structure de causalité dans un arbre à plusieurs niveaux. Par conséquent, un expert est en mesure de visualiser l’influence des relations hiérarchiques de cause à effet menant à la défaillance principale. De plus, quantifier ces causes en attribuant des probabilités aide à comprendre leur contribution dans l’occurrence de la défaillance du système. Le modèle ITCA est conçu pour réaliser la tâche de pronostic de défaillance dans les systèmes complexes. Basé sur une répartition des données au cours du temps, le modèle ITCA capture l’effet du vieillissement du système à travers de l’évolution de la structure de causalité des fautes. Ainsi, il décrit les changements de causalité résultant de la détérioration et du vieillissement au cours de la vie du système.----------ABSTRACT : The thesis develops a new methodology for diagnosis and prognosis of faults in a complex system, called Interpretable logic tree analysis (ILTA), which combines knowledge extraction techniques from knowledge discovery in databases (KDD) and the fault tree analysis (FTA). The methodology combined the advantages of the both techniques for understanding the problem of diagnosis and prognosis of faults. Although fault trees provide interpretable models for determining the possible causes of a fault, its use for fault diagnosis in an industrial system is limited, due to the need for expert knowledge to describe cause-and-effect relationships between internal system processes. However, it will be interesting to exploit the analytical power of fault trees but built from explicit and unbiased knowledge extracted directly from databases on the causality of faults. Therefore, the ILTA methodology works analogously to the logic of the fault tree analysis model (FTA) but with minimal involvement of experts. This modeling approach joins the logic of experts to represent the hierarchical structure of faults in a complex system. The ILTA methodology is applied to failure risk management by providing two interpretable advanced logic models: a multi-level tree (MILTA) and a multilevel tree over time (ITCA). The MILTA model is designed to accomplish the task of diagnosing failure in complex systems. It is able to decompose a complex defect and graphically model its causal structure in a tree on several levels. As a result, an expert is able to visualize the influence of hierarchical cause and effect relationships leading to the main failure. In addition, quantifying these causes by assigning probabilities helps to understand their contribution to the occurrence of system failure. The second model is a logical tree interpretable in time (ITCA), designed to perform the task of prognosis of failure in complex systems. Based on a distribution of data over time, the ITCA model captures the effect of the aging of the system through the evolution of the fault causation structure. Thus, it describes the causal changes resulting from deterioration and aging over the life of the system

    NASA Thesaurus. Volume 1: Hierarchical listing

    Get PDF
    There are 16,713 postable terms and 3,716 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary

    Gas Turbines

    Get PDF
    This book is intended to provide valuable information for the analysis and design of various gas turbine engines for different applications. The target audience for this book is design, maintenance, materials, aerospace and mechanical engineers. The design and maintenance engineers in the gas turbine and aircraft industry will benefit immensely from the integration and system discussions in the book. The chapters are of high relevance and interest to manufacturers, researchers and academicians as well

    NASA thesaurus. Volume 1: Hierarchical Listing

    Get PDF
    There are over 17,000 postable terms and nearly 4,000 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary and Volume 3 - Definitions

    Aeronautical engineering: A continuing bibliography with indexes (supplement 284)

    Get PDF
    This bibliography lists 974 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1992. The coverage includes documents on design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles
    • …
    corecore