446 research outputs found

    Bounds on the k-restricted arc connectivity of some bipartite tournaments

    Get PDF
    For k¿=¿2, a strongly connected digraph D is called -connected if it contains a set of arcs W such that contains at least k non-trivial strong components. The k-restricted arc connectivity of a digraph D was defined by Volkmann as . In this paper we bound for a family of bipartite tournaments T called projective bipartite tournaments. We also introduce a family of “good” bipartite oriented digraphs. For a good bipartite tournament T we prove that if the minimum degree of T is at least then where N is the order of the tournament. As a consequence, we derive better bounds for circulant bipartite tournaments.Peer ReviewedPostprint (author's final draft

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Arc Reversals in Tournaments.

    Get PDF

    Finding an induced subdivision of a digraph

    Get PDF
    We consider the following problem for oriented graphs and digraphs: Given an oriented graph (digraph) GG, does it contain an induced subdivision of a prescribed digraph DD? The complexity of this problem depends on DD and on whether GG must be an oriented graph or is allowed to contain 2-cycles. We give a number of examples of polynomial instances as well as several NP-completeness proofs

    Strong Subgraph Connectivity of Digraphs:A Survey

    Get PDF

    A new framework for analysis of coevolutionary systems:Directed graph representation and random walks

    Get PDF
    Studying coevolutionary systems in the context of simplified models (i.e. games with pairwise interactions between coevolving solutions modelled as self plays) remains an open challenge since the rich underlying structures associated with pairwise comparison-based fitness measures are often not taken fully into account. Although cyclic dynamics have been demonstrated in several contexts (such as intransitivity in coevolutionary problems), there is no complete characterization of cycle structures and their effects on coevolutionary search. We develop a new framework to address this issue. At the core of our approach is the directed graph (digraph) representation of coevolutionary problem that fully captures structures in the relations between candidate solutions. Coevolutionary processes are modelled as a specific type of Markov chains ? random walks on digraphs. Using this framework, we show that coevolutionary problems admit a qualitative characterization: a coevolutionary problem is either solvable (there is a subset of solutions that dominates the remaining candidate solutions) or not. This has an implication on coevolutionary search. We further develop our framework that provide the means to construct quantitative tools for analysis of coevolutionary processes and demonstrate their applications through case studies. We show that coevolution of solvable problems corresponds to an absorbing Markov chain for which we can compute the expected hitting time of the absorbing class. Otherwise, coevolution will cycle indefinitely and the quantity of interest will be the limiting invariant distribution of the Markov chain. We also provide an index for characterizing complexity in coevolutionary problems and show how they can be generated in a controlled mannerauthorsversionPeer reviewe

    On the acyclic disconnection and the girth

    Get PDF
    The acyclic disconnection, (omega) over right arrow (D), of a digraph D is the maximum number of connected components of the underlying graph of D - A(D*), where D* is an acyclic subdigraph of D. We prove that (omega) over right arrow (D) >= g - 1 for every strongly connected digraph with girth g >= 4, and we show that (omega) over right arrow (D) = g - 1 if and only if D congruent to C-g for g >= 5. We also characterize the digraphs that satisfy (omega) over right arrow (D) = g - 1, for g = 4 in certain classes of digraphs. Finally, we define a family of bipartite tournaments based on projective planes and we prove that their acyclic disconnection is equal to 3. Then, these bipartite tournaments are counterexamples of the conjecture (omega) over right arrow (T) = 3 if and only if T congruent to (C) over right arrow (4) posed for bipartite tournaments by Figueroa et al. (2012). (C) 2015 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author's final draft

    Quantum Hall Ground States, Binary Invariants, and Regular Graphs

    Full text link
    Extracting meaningful physical information out of a many-body wavefunction is often impractical. The polynomial nature of fractional quantum Hall (FQH) wavefunctions, however, provides a rare opportunity for a study by virtue of ground states alone. In this article, we investigate the general properties of FQH ground state polynomials. It turns out that the data carried by an FQH ground state can be essentially that of a (small) directed graph/matrix. We establish a correspondence between FQH ground states, binary invariants and regular graphs and briefly introduce all the necessary concepts. Utilizing methods from invariant theory and graph theory, we will then take a fresh look on physical properties of interest, e.g. squeezing properties, clustering properties, etc. Our methodology allows us to `unify' almost all of the previously constructed FQH ground states in the literature as special cases of a graph-based class of model FQH ground states, which we call \emph{accordion} model FQH states
    corecore