461 research outputs found

    GASP : Geometric Association with Surface Patches

    Full text link
    A fundamental challenge to sensory processing tasks in perception and robotics is the problem of obtaining data associations across views. We present a robust solution for ascertaining potentially dense surface patch (superpixel) associations, requiring just range information. Our approach involves decomposition of a view into regularized surface patches. We represent them as sequences expressing geometry invariantly over their superpixel neighborhoods, as uniquely consistent partial orderings. We match these representations through an optimal sequence comparison metric based on the Damerau-Levenshtein distance - enabling robust association with quadratic complexity (in contrast to hitherto employed joint matching formulations which are NP-complete). The approach is able to perform under wide baselines, heavy rotations, partial overlaps, significant occlusions and sensor noise. The technique does not require any priors -- motion or otherwise, and does not make restrictive assumptions on scene structure and sensor movement. It does not require appearance -- is hence more widely applicable than appearance reliant methods, and invulnerable to related ambiguities such as textureless or aliased content. We present promising qualitative and quantitative results under diverse settings, along with comparatives with popular approaches based on range as well as RGB-D data.Comment: International Conference on 3D Vision, 201

    Pattern vectors from algebraic graph theory

    Get PDF
    Graphstructures have proven computationally cumbersome for pattern analysis. The reason for this is that, before graphs can be converted to pattern vectors, correspondences must be established between the nodes of structures which are potentially of different size. To overcome this problem, in this paper, we turn to the spectral decomposition of the Laplacian matrix. We show how the elements of the spectral matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients of these polynomials can be used as graph features which can be encoded in a vectorial manner. We extend this representation to graphs in which there are unary attributes on the nodes and binary attributes on the edges by using the spectral decomposition of a Hermitian property matrix that can be viewed as a complex analogue of the Laplacian. To embed the graphs in a pattern space, we explore whether the vectors of invariants can be embedded in a low- dimensional space using a number of alternative strategies, including principal components analysis ( PCA), multidimensional scaling ( MDS), and locality preserving projection ( LPP). Experimentally, we demonstrate that the embeddings result in well- defined graph clusters. Our experiments with the spectral representation involve both synthetic and real- world data. The experiments with synthetic data demonstrate that the distances between spectral feature vectors can be used to discriminate between graphs on the basis of their structure. The real- world experiments show that the method can be used to locate clusters of graphs

    Machine Annotation of Traditional Irish Dance Music

    Get PDF
    The work presented in this thesis is validated in experiments using 130 realworld field recordings of traditional music from sessions, classes, concerts and commercial recordings. Test audio includes solo and ensemble playing on a variety of instruments recorded in real-world settings such as noisy public sessions. Results are reported using standard measures from the field of information retrieval (IR) including accuracy, error, precision and recall and the system is compared to alternative approaches for CBMIR common in the literature

    A Comprehensive Trainable Error Model for Sung Music Queries

    Full text link
    We propose a model for errors in sung queries, a variant of the hidden Markov model (HMM). This is a solution to the problem of identifying the degree of similarity between a (typically error-laden) sung query and a potential target in a database of musical works, an important problem in the field of music information retrieval. Similarity metrics are a critical component of query-by-humming (QBH) applications which search audio and multimedia databases for strong matches to oral queries. Our model comprehensively expresses the types of error or variation between target and query: cumulative and non-cumulative local errors, transposition, tempo and tempo changes, insertions, deletions and modulation. The model is not only expressive, but automatically trainable, or able to learn and generalize from query examples. We present results of simulations, designed to assess the discriminatory potential of the model, and tests with real sung queries, to demonstrate relevance to real-world applications

    The distribution of cycles in breakpoint graphs of signed permutations

    Get PDF
    Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre, who enumerated unsigned permutations whose breakpoint graph contains kk cycles, to signed permutations, and prove explicit formulas for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also compare these distributions to those of several well-studied distances, emphasising the cases where approximations obtained in this way stand out. Finally, we show how our results can be used to derive simpler proofs of other previously known results

    A Geometric Approach to Pattern Matching in Polyphonic Music

    Get PDF
    The music pattern matching problem involves finding matches of a small fragment of music called the "pattern" into a larger body of music called the "score". We represent music as a series of horizontal line segments in the plane, and reformulate the problem as finding the best translation of a small set of horizontal line segments into a larger set of horizontal line segments. We present an efficient algorithm that can handle general weight models that measure the musical quality of a match of the pattern into the score, allowing for approximate pattern matching. We give an algorithm with running time O(nm(d + log m)), where n is the size of the score, m is the size of the pattern, and d is the size of the discrete set of musical pitches used. Our algorithm compares favourably to previous approaches to the music pattern matching problem. We also demonstrate that this geometric formulation of the music pattern matching problem is unlikely to have a significantly faster algorithm since it is at least as hard as 3SUM, a basic problem that is conjectured to have no subquadratic algorithm. Lastly, we present experiments to show how our algorithm can find musically sensible variations of a theme, as well as polyphonic musical patterns in a polyphonic score

    Discovering distorted repeating patterns in polyphonic music through longest increasing subsequences

    Get PDF
    We study the problem of identifying repetitions under transposition and time-warp invariances in polyphonic symbolic music. Using a novel onset-time-pair representation, we reduce the repeating pattern discovery problem to instances of the classical problem of finding the longest increasing subsequences. The resulting algorithm works in O(n(2) log n) time where n is the number of notes in a musical work. We also study windowed variants of the problem where onset-time differences between notes are restricted, and show that they can also be solved in O(n(2) log n) time using the algorithm.Peer reviewe
    • …
    corecore