4,965 research outputs found

    Enhancing face recognition at a distance using super resolution

    Get PDF
    The characteristics of surveillance video generally include low-resolution images and blurred images. Decreases in image resolution lead to loss of high frequency facial components, which is expected to adversely affect recognition rates. Super resolution (SR) is a technique used to generate a higher resolution image from a given low-resolution, degraded image. Dictionary based super resolution pre-processing techniques have been developed to overcome the problem of low-resolution images in face recognition. However, super resolution reconstruction process, being ill-posed, and results in visual artifacts that can be visually distracting to humans and/or affect machine feature extraction and face recognition algorithms. In this paper, we investigate the impact of two existing super-resolution methods to reconstruct a high resolution from single/multiple low-resolution images on face recognition. We propose an alternative scheme that is based on dictionaries in high frequency wavelet subbands. The performance of the proposed method will be evaluated on databases of high and low-resolution images captured under different illumination conditions and at different distances. We shall demonstrate that the proposed approach at level 3 DWT decomposition has superior performance in comparison to the other super resolution methods

    Line-Field Based Adaptive Image Model for Blind Deblurring

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Restoration of Atmospheric Turbulence Degraded Video using Kurtosis Minimization and Motion Compensation

    Get PDF
    In this thesis work, the background of atmospheric turbulence degradation in imaging was reviewed and two aspects are highlighted: blurring and geometric distortion. The turbulence burring parameter is determined by the atmospheric turbulence condition that is often unknown; therefore, a blur identification technique was developed that is based on a higher order statistics (HOS). It was observed that the kurtosis generally increases as an image becomes blurred (smoothed). Such an observation was interpreted in the frequency domain in terms of phase correlation. Kurtosis minimization based blur identification is built upon this observation. It was shown that kurtosis minimization is effective in identifying the blurring parameter directly from the degraded image. Kurtosis minimization is a general method for blur identification. It has been tested on a variety of blurs such as Gaussian blur, out of focus blur as well as motion blur. To compensate for the geometric distortion, earlier work on the turbulent motion compensation was extended to deal with situations in which there is camera/object motion. Trajectory smoothing is used to suppress the turbulent motion while preserving the real motion. Though the scintillation effect of atmospheric turbulence is not considered separately, it can be handled the same way as multiple frame denoising while motion trajectories are built.Ph.D.Committee Chair: Mersereau, Russell; Committee Co-Chair: Smith, Mark; Committee Member: Lanterman, Aaron; Committee Member: Wang, May; Committee Member: Tannenbaum, Allen; Committee Member: Williams, Dougla

    Blind image deconvolution: nonstationary Bayesian approaches to restoring blurred photos

    Get PDF
    High quality digital images have become pervasive in modern scientific and everyday life — in areas from photography to astronomy, CCTV, microscopy, and medical imaging. However there are always limits to the quality of these images due to uncertainty and imprecision in the measurement systems. Modern signal processing methods offer the promise of overcoming some of these problems by postprocessing these blurred and noisy images. In this thesis, novel methods using nonstationary statistical models are developed for the removal of blurs from out of focus and other types of degraded photographic images. The work tackles the fundamental problem blind image deconvolution (BID); its goal is to restore a sharp image from a blurred observation when the blur itself is completely unknown. This is a “doubly illposed” problem — extreme lack of information must be countered by strong prior constraints about sensible types of solution. In this work, the hierarchical Bayesian methodology is used as a robust and versatile framework to impart the required prior knowledge. The thesis is arranged in two parts. In the first part, the BID problem is reviewed, along with techniques and models for its solution. Observation models are developed, with an emphasis on photographic restoration, concluding with a discussion of how these are reduced to the common linear spatially-invariant (LSI) convolutional model. Classical methods for the solution of illposed problems are summarised to provide a foundation for the main theoretical ideas that will be used under the Bayesian framework. This is followed by an indepth review and discussion of the various prior image and blur models appearing in the literature, and then their applications to solving the problem with both Bayesian and nonBayesian techniques. The second part covers novel restoration methods, making use of the theory presented in Part I. Firstly, two new nonstationary image models are presented. The first models local variance in the image, and the second extends this with locally adaptive noncausal autoregressive (AR) texture estimation and local mean components. These models allow for recovery of image details including edges and texture, whilst preserving smooth regions. Most existing methods do not model the boundary conditions correctly for deblurring of natural photographs, and a Chapter is devoted to exploring Bayesian solutions to this topic. Due to the complexity of the models used and the problem itself, there are many challenges which must be overcome for tractable inference. Using the new models, three different inference strategies are investigated: firstly using the Bayesian maximum marginalised a posteriori (MMAP) method with deterministic optimisation; proceeding with the stochastic methods of variational Bayesian (VB) distribution approximation, and simulation of the posterior distribution using the Gibbs sampler. Of these, we find the Gibbs sampler to be the most effective way to deal with a variety of different types of unknown blurs. Along the way, details are given of the numerical strategies developed to give accurate results and to accelerate performance. Finally, the thesis demonstrates state of the art results in blind restoration of synthetic and real degraded images, such as recovering details in out of focus photographs

    Edge-Preserving Tomographic Reconstruction with Nonlocal Regularization

    Full text link
    Tomographic image reconstruction using statistical methods can provide more accurate system modeling, statistical models, and physical constraints than the conventional filtered backprojection (FBP) method. Because of the ill posedness of the reconstruction problem, a roughness penalty is often imposed on the solution to control noise. To avoid smoothing of edges, which are important image attributes, various edge-preserving regularization methods have been proposed. Most of these schemes rely on information from local neighborhoods to determine the presence of edges. In this paper, we propose a cost function that incorporates nonlocal boundary information into the regularization method. We use an alternating minimization algorithm with deterministic annealing to minimize the proposed cost function, jointly estimating region boundaries and object pixel values. We apply variational techniques implemented using level-sets methods to update the boundary estimates; then, using the most recent boundary estimate, we minimize a space-variant quadratic cost function to update the image estimate. For the positron emission tomography transmission reconstruction application, we compare the bias-variance tradeoff of this method with that of a "conventional" penalized-likelihood algorithm with local Huber roughness penalty.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85989/1/Fessler73.pd

    Automatic Main Road Extraction from High Resolution Satellite Imagery

    Get PDF
    Road information is essential for automatic GIS (geographical information system) data acquisition, transportation and urban planning. Automatic road (network) detection from high resolution satellite imagery will hold great potential for significant reduction of database development/updating cost and turnaround time. From so called low level feature detection to high level context supported grouping, so many algorithms and methodologies have been presented for this purpose. There is not any practical system that can fully automatically extract road network from space imagery for the purpose of automatic mapping. This paper presents the methodology of automatic main road detection from high resolution satellite IKONOS imagery. The strategies include multiresolution or image pyramid method, Gaussian blurring and the line finder using 1-dimemsional template correlation filter, line segment grouping and multi-layer result integration. Multi-layer or multi-resolution method for road extraction is a very effective strategy to save processing time and improve robustness. To realize the strategy, the original IKONOS image is compressed into different corresponding image resolution so that an image pyramid is generated; after that the line finder of 1-dimemsional template correlation filter after Gaussian blurring filtering is applied to detect the road centerline. Extracted centerline segments belong to or do not belong to roads. There are two ways to identify the attributes of the segments, the one is using segment grouping to form longer line segments and assign a possibility to the segment depending on the length and other geometric and photometric attribute of the segment, for example the longer segment means bigger possibility of being road. Perceptual-grouping based method is used for road segment linking by a possibility model that takes multi-information into account; here the clues existing in the gaps are considered. Another way to identify the segments is feature detection back-to-higher resolution layer from the image pyramid
    corecore