2,295 research outputs found

    Potts model, parametric maxflow and k-submodular functions

    Full text link
    The problem of minimizing the Potts energy function frequently occurs in computer vision applications. One way to tackle this NP-hard problem was proposed by Kovtun [19,20]. It identifies a part of an optimal solution by running kk maxflow computations, where kk is the number of labels. The number of "labeled" pixels can be significant in some applications, e.g. 50-93% in our tests for stereo. We show how to reduce the runtime to O(logk)O(\log k) maxflow computations (or one {\em parametric maxflow} computation). Furthermore, the output of our algorithm allows to speed-up the subsequent alpha expansion for the unlabeled part, or can be used as it is for time-critical applications. To derive our technique, we generalize the algorithm of Felzenszwalb et al. [7] for {\em Tree Metrics}. We also show a connection to {\em kk-submodular functions} from combinatorial optimization, and discuss {\em kk-submodular relaxations} for general energy functions.Comment: Accepted to ICCV 201

    Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients

    Get PDF
    We address the denoising of images contaminated with multiplicative noise, e.g. speckle noise. Classical ways to solve such problems are filtering, statistical (Bayesian) methods, variational methods, and methods that convert the multiplicative noise into additive noise (using a logarithmic function), shrinkage of the coefficients of the log-image data in a wavelet basis or in a frame, and transform back the result using an exponential function. We propose a method composed of several stages: we use the log-image data and apply a reasonable under-optimal hard-thresholding on its curvelet transform; then we apply a variational method where we minimize a specialized criterion composed of an 1\ell^1 data-fitting to the thresholded coefficients and a Total Variation regularization (TV) term in the image domain; the restored image is an exponential of the obtained minimizer, weighted in a way that the mean of the original image is preserved. Our restored images combine the advantages of shrinkage and variational methods and avoid their main drawbacks. For the minimization stage, we propose a properly adapted fast minimization scheme based on Douglas-Rachford splitting. The existence of a minimizer of our specialized criterion being proven, we demonstrate the convergence of the minimization scheme. The obtained numerical results outperform the main alternative methods
    corecore