541 research outputs found

    Techniques for enhancing digital images

    Get PDF
    The images obtain from either research studies or optical instruments are often corrupted with noise. Image denoising involves the manipulation of image data to produce a visually high quality image. This thesis reviews the existing denoising algorithms and the filtering approaches available for enhancing images and/or data transmission. Spatial-domain and Transform-domain digital image filtering algorithms have been used in the past to suppress different noise models. The different noise models can be either additive or multiplicative. Selection of the denoising algorithm is application dependent. It is necessary to have knowledge about the noise present in the image so as to select the appropriated denoising algorithm. Noise models may include Gaussian noise, Salt and Pepper noise, Speckle noise and Brownian noise. The Wavelet Transform is similar to the Fourier transform with a completely different merit function. The main difference between Wavelet transform and Fourier transform is that, in the Wavelet Transform, Wavelets are localized in both time and frequency. In the standard Fourier Transform, Wavelets are only localized in frequency. Wavelet analysis consists of breaking up the signal into shifted and scales versions of the original (or mother) Wavelet. The Wiener Filter (mean squared estimation error) finds implementations as a LMS filter (least mean squares), RLS filter (recursive least squares), or Kalman filter. Quantitative measure (metrics) of the comparison of the denoising algorithms is provided by calculating the Peak Signal to Noise Ratio (PSNR), the Mean Square Error (MSE) value and the Mean Absolute Error (MAE) evaluation factors. A combination of metrics including the PSNR, MSE, and MAE are often required to clearly assess the model performance

    Seinale prozesaketan eta ikasketa automatikoan oinarritutako ekarpenak bihotz-erritmoen analisirako bihotz-biriketako berpiztean

    Get PDF
    Tesis inglés 218 p. -- Tesis euskera 220 p.Out-of-hospital cardiac arrest (OHCA ) is characterized by the sudden loss of the cardiac function, andcauses around 10% of the total mortality in developed countries. Survival from OHCA depends largelyon two factors: early defibrillation and early cardiopulmonary resuscitation (CPR). The electrical shock isdelivered using a shock advice algorithm (SAA) implemented in defibrillators. Unfortunately, CPR mustbe stopped for a reliable SAA analysis because chest compressions introduce artefacts in the ECG. Theseinterruptions in CPR have an adverse effect on OHCA survival. Since the early 1990s, many efforts havebeen made to reliably analyze the rhythm during CPR. Strategies have mainly focused on adaptive filtersto suppress the CPR artefact followed by SAAs of commercial defibrillators. However, these solutionsdid not meet the American Heart Association¿s (AHA) accuracy requirements for shock/no-shockdecisions. A recent approach, which replaces the commercial SAA by machine learning classifiers, hasdemonstrated that a reliable rhythm analysis during CPR is possible. However, defibrillation is not theonly treatment needed during OHCA, and depending on the clinical context a finer rhythm classificationis needed. Indeed, an optimal OHCA scenario would allow the classification of the five cardiac arrestrhythm types that may be present during resuscitation. Unfortunately, multiclass classifiers that allow areliable rhythm analysis during CPR have not yet been demonstrated. On all of these studies artefactsoriginate from manual compressions delivered by rescuers. Mechanical compression devices, such as theLUCAS or the AutoPulse, are increasingly used in resuscitation. Thus, a reliable rhythm analysis duringmechanical CPR is becoming critical. Unfortunately, no AHA compliant algorithms have yet beendemonstrated during mechanical CPR. The focus of this thesis work is to provide new or improvedsolutions for rhythm analysis during CPR, including shock/no-shock decision during manual andmechanical CPR and multiclass classification during manual CPR

    Functional Rotation Axis Based Approach for Estimating Hip Joint Angles Using Wearable Inertial Sensors: Comparison to Existing Methods

    Get PDF
    Wearable sensors are at the heart of the digital health revolution. Integral to the use of these sensors for monitoring conditions impacting balance and mobility are accurate estimates of joint angles. To this end a simple and novel method of estimating hip joint angles from small wearable magnetic and inertial sensors is proposed and its performance is established relative to optical motion capture in a sample of human subjects. Improving upon previous work, this approach does not require precise sensor placement or specific calibration motions, thereby easing deployment outside of the research laboratory. Specific innovations include the determination of sensor to segment rotations based on functionally determined joint centers, and the development of a novel filtering algorithm for estimating the relative orientation of adjacent body segments. Hip joint angles and range of motion determined from the proposed approach and an existing method are compared to those from an optical motion capture system during walking at a variety of speeds and tasks designed to exercise the hip through its full range of motion. Results show that the proposed approach estimates flexion/extension angle more accurately (RMSE from 7.08 to 7.29 deg) than the existing method (RMSE from 11.64 deg to 14.33 deg), with similar performance for the other anatomical axes. Agreement of each method with optical motion capture is further characterized by considering correlation and regression analyses. Mean ranges of motion for the proposed method are not largely different from those reported by motion capture, and showed similar values to the existing method. Results indicate that this algorithm provides a promising approach for estimating hip joint angles using wearable inertial sensors, and would allow for use outside of constrained research laboratories

    Doctor of Philosophy

    Get PDF
    dissertationHands are so central to the human experience, yet we often take for granted the capacity to maneuver objects, to form a gesture, or to caress a loved-one’s hand. The effects of hand amputation can be severe, including functional disabilities, chronic phantom pain, and a profound sense of loss which can lead to depression and anxiety. In previous studies, peripheral-nerve interfaces, such as the Utah Slanted Electrode Array (USEA), have shown potential for restoring a sense of touch and prosthesis movement control. This dissertation represents a substantial step forward in the use of the USEAs for clinical careâ€"ultimately providing human amputees with widespread hand sensation that is functionally useful and psychologically meaningful. In completion of this ultimate objective, we report on three major advances. First, we performed the first dual-USEA implantations in human amputees; placing one USEA in the residual median nerve and another USEA in the residual ulnar nerve. Chapter 2 of this dissertation shows that USEAs provided full-hand sensory coverage, and that movement of the implant site to the upper arm in the second subject, proximal to nerve branch-points to extrinsic hand muscles, enabled activation of both proprioceptive sensory percepts and cutaneous percepts. Second, in Chapter 3, we report on successful use of USEA-evoked sensory percepts for functional discrimination tasks. We provide a comprehensive report of functional discrimination among USEA-evoked sensory percepts from three human subjects, including discrimination among multiple proprioceptive or cutaneous sensory percepts with different hand locations, sensory qualities, and/or intensities. Finally, in Chapter 4, we report on the psychological value of multiple degree of freedom prosthesis control, multisensor prosthesis sensation, and closed-loop control. This chapter represents the first report of prosthesis embodiment during closed-loop and open-loop prosthesis control by an amputee, as well as the most sophisticated closed-loop prosthesis control reported in literature to-date, including 5-degree-of-freedom motor control and sensory feedback from 4 hand locations. Ultimately, we expect that USEA-evoked hand sensations may be used as part of a take-home prosthesis system which will provide users with both advanced functional capabilities and a meaningful sense of embodiment and limb restoration

    Dynamic Assessment of Baroreflex Control of Heart Rate During Induction of Propofol Anesthesia Using a Point Process Method

    Get PDF
    In this article, we present a point process method to assess dynamic baroreflex sensitivity (BRS) by estimating the baroreflex gain as focal component of a simplified closed-loop model of the cardiovascular system. Specifically, an inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is identified by linear and bilinear bivariate regressions on both the previous R−R intervals (RR) and blood pressure (BP) beat-to-beat measures. The instantaneous baroreflex gain is estimated as the feedback branch of the loop with a point-process filter, while the RRBP feedforward transfer function representing heart contractility and vasculature effects is simultaneously estimated by a recursive least-squares filter. These two closed-loop gains provide a direct assessment of baroreflex control of heart rate (HR). In addition, the dynamic coherence, cross bispectrum, and their power ratio can also be estimated. All statistical indices provide a valuable quantitative assessment of the interaction between heartbeat dynamics and hemodynamics. To illustrate the application, we have applied the proposed point process model to experimental recordings from 11 healthy subjects in order to monitor cardiovascular regulation under propofol anesthesia. We present quantitative results during transient periods, as well as statistical analyses on steady-state epochs before and after propofol administration. Our findings validate the ability of the algorithm to provide a reliable and fast-tracking assessment of BRS, and show a clear overall reduction in baroreflex gain from the baseline period to the start of propofol anesthesia, confirming that instantaneous evaluation of arterial baroreflex control of HR may yield important implications in clinical practice, particularly during anesthesia and in postoperative care.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant K25-NS05758)National Institutes of Health (U.S.) (Grant DP2- OD006454)National Institutes of Health (U.S.) (Grant T32NS048005)National Institutes of Health (U.S.) (Grant T32NS048005)National Institutes of Health (U.S.) (Grant R01-DA015644)Massachusetts General Hospital (Clinical Research Center, UL1 Grant RR025758

    EEG and ECoG features for Brain Computer Interface in Stroke Rehabilitation

    Get PDF
    The ability of non-invasive Brain-Computer Interface (BCI) to control an exoskeleton was used for motor rehabilitation in stroke patients or as an assistive device for the paralyzed. However, there is still a need to create a more reliable BCI that could be used to control several degrees of Freedom (DoFs) that could improve rehabilitation results. Decoding different movements from the same limb, high accuracy and reliability are some of the main difficulties when using conventional EEG-based BCIs and the challenges we tackled in this thesis. In this PhD thesis, we investigated that the classification of several functional hand reaching movements from the same limb using EEG is possible with acceptable accuracy. Moreover, we investigated how the recalibration could affect the classification results. For this reason, we tested the recalibration in each multi-class decoding for within session, recalibrated between-sessions, and between sessions. It was shown the great influence of recalibrating the generated classifier with data from the current session to improve stability and reliability of the decoding. Moreover, we used a multiclass extension of the Filter Bank Common Spatial Patterns (FBCSP) to improve the decoding accuracy based on features and compared it to our previous study using CSP. Sensorimotor-rhythm-based BCI systems have been used within the same frequency ranges as a way to influence brain plasticity or controlling external devices. However, neural oscillations have shown to synchronize activity according to motor and cognitive functions. For this reason, the existence of cross-frequency interactions produces oscillations with different frequencies in neural networks. In this PhD, we investigated for the first time the existence of cross-frequency coupling during rest and movement using ECoG in chronic stroke patients. We found that there is an exaggerated phase-amplitude coupling between the phase of alpha frequency and the amplitude of gamma frequency, which can be used as feature or target for neurofeedback interventions using BCIs. This coupling has been also reported in another neurological disorder affecting motor function (Parkinson and dystonia) but, to date, it has not been investigated in stroke patients. This finding might change the future design of assistive or therapeuthic BCI systems for motor restoration in stroke patients

    The electronic stethoscope

    Get PDF

    Combinatorial optimisation for arterial image segmentation.

    Get PDF
    Cardiovascular disease is one of the leading causes of the mortality in the western world. Many imaging modalities have been used to diagnose cardiovascular diseases. However, each has different forms of noise and artifacts that make the medical image analysis field important and challenging. This thesis is concerned with developing fully automatic segmentation methods for cross-sectional coronary arterial imaging in particular, intra-vascular ultrasound and optical coherence tomography, by incorporating prior and tracking information without any user intervention, to effectively overcome various image artifacts and occlusions. Combinatorial optimisation methods are proposed to solve the segmentation problem in polynomial time. A node-weighted directed graph is constructed so that the vessel border delineation is considered as computing a minimum closed set. A set of complementary edge and texture features is extracted. Single and double interface segmentation methods are introduced. Novel optimisation of the boundary energy function is proposed based on a supervised classification method. Shape prior model is incorporated into the segmentation framework based on global and local information through the energy function design and graph construction. A combination of cross-sectional segmentation and longitudinal tracking is proposed using the Kalman filter and the hidden Markov model. The border is parameterised using the radial basis functions. The Kalman filter is used to adapt the inter-frame constraints between every two consecutive frames to obtain coherent temporal segmentation. An HMM-based border tracking method is also proposed in which the emission probability is derived from both the classification-based cost function and the shape prior model. The optimal sequence of the hidden states is computed using the Viterbi algorithm. Both qualitative and quantitative results on thousands of images show superior performance of the proposed methods compared to a number of state-of-the-art segmentation methods

    Image Guided Respiratory Motion Analysis: Time Series and Image Registration.

    Full text link
    The efficacy of Image guided radiation therapy (IGRT) systems relies on accurately extracting, modeling and predicting tumor movement with imaging techniques. This thesis investigates two key problems associated with such systems: motion modeling and image processing. For thoracic and upper abdominal tumors, respiratory motion is the dominant factor for tumor movement. We have studied several special structured time series analysis techniques to incorporate the semi-periodicity characteristics of respiratory motion. The proposed methods are robust towards large variations among fractions and populations; the algorithms perform stably in the presence of sparse radiographic observations with noise. We have proposed a subspace projection method to quantitatively evaluate the semi-periodicity of a given observation trace; a nonparametric local regression approach for real-time prediction of respiratory motion; a state augmentation scheme to model hysteresis; and an ellipse tracking algorithm to estimate the trend of respiratory motion in real time. For image processing, we have focused on designing regularizations to account for prior information in image registration problems. We investigated a penalty function design that accommodates tissue-type-dependent elasticity information. We studied a class of discontinuity preserving regularizers that yield smooth deformation estimates in most regions, yet allow discontinuities supported by data. We have further proposed a discriminate regularizer that preserves shear discontinuity, but discourages folding or vacuum generating flows. In addition, we have initiated a preliminary principled study on the fundamental performance limit of image registration problems. We proposed a statistical generative model to account for noise effect in both source and target images, and investigated the approximate performance of the maximum-likelihood estimator corresponding to the generative model and the commonly adopted M-estimator. A simple example suggests that the approximation is reasonably accurate. Our studies in both time series analysis and image registration constitute essential building-blocks for clinical applications such as adaptive treatment. Besides their theoretical interests, it is our sincere hope that with further justifications, the proposed techniques would realize its clinical value, and improve the quality of life for patients.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60673/1/druan_1.pd
    corecore