1,420 research outputs found

    Viewing the personality traits through a cerebellar lens. A focus on the constructs of novelty seeking, harm avoidance, and alexithymia

    Get PDF
    The variance in the range of personality trait expression appears to be linked to structural variance in specific brain regions. In evidencing associations between personality factors and neurobiological measures, it seems evident that the cerebellum has not been up to now thought as having a key role in personality. This paper will review the most recent structural and functional neuroimaging literature that engages the cerebellum in personality traits, as novelty seeking and harm avoidance, and it will discuss the findings in the context of contemporary theories of affective and cognitive cerebellar function. By using region of interest (ROI)- and voxel-based approaches, we recently evidenced that the cerebellar volumes correlate positively with novelty seeking scores and negatively with harm avoidance scores. Subjects who search for new situations as a novelty seeker does (and a harm avoiding does not do) show a different engagement of their cerebellar circuitries in order to rapidly adapt to changing environments. The emerging model of cerebellar functionality may explain how the cerebellar abilities in planning, controlling, and putting into action the behavior are associated to normal or abnormal personality constructs. In this framework, it is worth reporting that increased cerebellar volumes are even associated with high scores in alexithymia, construct of personality characterized by impairment in cognitive, emotional, and affective processing. On such a basis, it seems necessary to go over the traditional cortico-centric view of personality constructs and to address the function of the cerebellar system in sustaining aspects of motivational network that characterizes the different temperamental trait

    Connectome-Based Predictive Modeling of Individual Anxiety

    Get PDF
    Anxiety-related illnesses are highly prevalent in human society. Being able to identify neurobiological markers signaling high trait anxiety could aid the assessment of individuals with high risk for mental illness. Here, we applied connectome-based predictive modeling (CPM) to whole-brain resting-state functional connectivity (rsFC) data to predict the degree of trait anxiety in 76 healthy participants. Using a computational "lesion" approach in CPM, we then examined the weights of the identified main brain areas as well as their connectivity. Results showed that the CPM successfully predicted individual anxiety based on whole-brain rsFC, especially the rsFC between limbic areas and prefrontal cortex. The prediction power of the model significantly decreased from simulated lesions of limbic areas, lesions of the connectivity within limbic areas, and lesions of the connectivity between limbic areas and prefrontal cortex. Importantly, this neural model generalized to an independent large sample (n = 501). These findings highlight important roles of the limbic system and prefrontal cortex in anxiety prediction. Our work provides evidence for the usefulness of connectome-based modeling in predicting individual personality differences and indicates its potential for identifying personality factors at risk for psychopathology

    Different Whole-Brain Functional Connectivity Correlates of Reactive-Proactive Aggression and Callous-Unemotional Traits in Children and Adolescents with Disruptive Behaviors

    Full text link
    Background: Disruptive behavior in children and adolescents can manifest as reactive aggression and proactive aggression and is modulated by callous-unemotional traits and other comorbidities. Neural correlates of these aggression dimensions or subtypes and comorbid symptoms remain largely unknown. This multi-center study investigated the relationship between resting state functional connectivity (rsFC) and aggression subtypes considering comorbidities. Methods: The large sample of children and adolescents aged 8–18 years (n = 207; mean age = 13.30 ± 2.60 years, 150 males) included 118 cases with disruptive behavior (80 with Oppositional Defiant Disorder and/or Conduct Disorder) and 89 controls. Attention-deficit/hyperactivity disorder (ADHD) and anxiety symptom scores were analyzed as covariates when assessing group differences and dimensional aggression effects on hypothesis-free global and local voxel-to-voxel whole-brain rsFC based on functional magnetic resonance imaging at 3 Tesla. Results: Compared to controls, the cases demonstrated altered rsFC in frontal areas, when anxiety but not ADHD symptoms were controlled. For cases, reactive and proactive aggression scores related to global and local rsFC in the central gyrus and precuneus, regions linked to aggression-related impairments. Callous-unemotional trait severity was correlated with ICC in the inferior and middle temporal regions implicated in empathy, emotion, and reward processing. Most observed aggression subtype-specific patterns could only be identified when ADHD and anxiety were controlled for. Conclusions: This study clarifies that hypothesis-free brain connectivity measures can disentangle distinct though overlapping dimensions of aggression in youths. Moreover, our results highlight the importance of considering comorbid symptoms to detect aggression-related rsFC alterations in youths

    Predicting social anxiety in young adults with machine learning of resting-state brain functional radiomic features

    Get PDF
    Social anxiety is a symptom widely prevalent among young adults, and when present in excess, can lead to maladaptive patterns of social behavior. Recent approaches that incorporate brain functional radiomic features and machine learning have shown potential for predicting certain phenotypes or disorders from functional magnetic resonance images. In this study, we aimed to predict the level of social anxiety in young adult participants by training machine learning models with resting-state brain functional radiomic features including the regional homogeneity, fractional amplitude of low-frequency fluctuation, fractional resting-state physiological fluctuation amplitude, and degree centrality. Among the machine learning models, the XGBoost model achieved the best performance with balanced accuracy of 77.7% and F1 score of 0.815. Analysis of input feature importance demonstrated that the orbitofrontal cortex and the degree centrality were most relevant to predicting the level of social anxiety among the input brain regions and the input type of radiomic features, respectively. These results suggest potential validity for predicting social anxiety with machine learning of the resting-state brain functional radiomic features and provide further understanding of the neural basis of the symptom.ope

    Self-directed down-regulation of auditory cortex activity mediated by real-time fMRI neurofeedback augments attentional processes, resting cerebral perfusion, and auditory activation

    Get PDF
    In this work, we investigated the use of real-time functional magnetic resonance imaging (fMRI) with neurofeedback training (NFT) to teach volitional down-regulation of the auditory cortex (AC) using directed attention strategies as there is a growing interest in the application of fMRI-NFT to treat neurologic disorders. Healthy participants were separated into two groups: the experimental group received real feedback regarding activity in the AC; the control group was supplied sham feedback yoked from a random participant in the experimental group and matched for fMRI-NFT experience. Each participant underwent five fMRI-NFT sessions. Each session contained 2 neurofeedback runs where participants completed alternating blocks of “rest” and “lower” conditions while viewing a continuously-updated bar representing AC activation and listening to continuous noise. Average AC deactivation was extracted from each closed-loop neuromodulation run and used to quantify the control over AC (AC control), which was found to significantly increase across training in the experimental group. Additionally, behavioral testing was completed outside of the MRI on sessions 1 and 5 consisting of a subjective questionnaire to assess attentional control and two quantitative tests of attention. No significant changes in behavior were observed; however, there was a significant correlation between changes in AC control and attentional control. Also, in a neural assessment before and after fMRI-NFT, AC activity in response to continuous noise stimulation was found to significantly decrease across training while changes in AC resting perfusion were found to be significantly greater in the experimental group. These results may be useful in formulating effective therapies outside of the MRI, specifically for chronic tinnitus which is often characterized by hyperactivity of the primary auditory cortex and altered attentional processes. Furthermore, the modulation of attention may be useful in developing therapies for other disorders such as chronic pain

    What do ADHD neuroimaging studies reveal for teachers, teacher educators and inclusive education?

    Get PDF
    Background: Ongoing debate about Attention Deficit Hyperactivity Disorder (ADHD) has not resolved ambivalent teacher beliefs about ADHD. This is an important matter since teachers’ beliefs influence their pedagogy, classroom management, and their referral procedures for formal diagnoses of ADHD. They therefore must be provided with up-to-date professional learning about ADHD. Objective: To synthesise neuroimaging studies, which examined differences in brain organisation and function in those with ADHD compared to matched unaffected controls. The overarching goal was to enhance teachers’ understanding of ADHD by providing synthesised research findings around the neurological basis of ADHD. Method: The PRISMA method was used to search the Medline, PsycINFO, Web of Science and Scopus databases to complete a systematic review of peer-reviewed research that compared individuals with ADHD with matched controls published between 2010 and December 2015. Results: The identification and analyses of 174 MRI and fMRI relevant studies across a sample of over 24,000 showed that there are significant differences in neural anatomy and processing in ADHD compared to unaffected matched controls. Conclusions: Compelling evidence shows ADHD is a neurodevelopmental disability, not a socially determined set of behaviours. Results point to an urgent need for teacher professional learning and systematic up-to-date preservice teacher education along with inclusive education policy reform

    The Emotional Brain in Obsessive-Compulsive Disorder

    Get PDF
    Background Obsessive-compulsive disorder (OCD) is characterized by distressing obsessions and time-consuming compulsions. The disorder affects 1-3% and can be highly impairing to daily functioning and detrimental to the quality of life. Cognitive behavioral therapy is an effective treatment for 50-75% of people with OCD, leaving a considerable minority who do not benefit from the best available treatments we have today. Neuroimaging has related the disorder to the function and structure of cortico-striato-thalamo-cortical and fronto-limbic circuits. A better understanding of these circuits might contribute to a better understanding of the disorder, how current treatments change the brain, and how we can help non-responders with better treatments in the future. This is likely particularly true for fronto-limbic and affective circuits, given their role in the formation, maintenance, and extinction of fear as well as motivating behavior. The aim of this dissertation was, first, to investigate how OCD is related to brain activation during emotional processing of aversive stimuli. Secondly, we wanted to examine if unaffected siblings of OCD patients showed similar anxiety, brain activation, and connectivity during emotion provocation and regulation as their OCD-affected siblings compared to unrelated healthy controls. Lastly, we wanted to investigate if the resting-state network structure changes in OCD patients directly after the Bergen 4-Day Treatment (B4DT), a concentrated and exposure-based psychological therapy. Methods Paper I was a meta-analysis of 25 functional neuroimaging studies comparing OCD patients and healthy controls during emotion processing, when participants were exposed to aversive or neutral stimuli. In Paper II we used functional magnetic resonance imaging (fMRI) to investigate distress, brain activation, and fronto-limbic connectivity during emotion provocation and regulation of neutral, fear-related, and OCD-related stimuli in 43 unmedicated OCD patients, 19 unaffected siblings, and 38 healthy controls. In Paper III we used resting-state fMRI to study the network structure of 28 OCD patients (21 unmedicated) and 19 healthy controls the day before and three days after B4DT. We examined static and dynamic graph metrics at the global, subnetwork, and regional levels, as well as between-subnetwork connectivity. Results In Paper I, we found that OCD patients showed more activation than healthy controls in the orbitofrontal cortex (OFC), extending into the subgenual anterior cingulate cortex (sgACC) and ventromedial prefrontal cortex (vmPFC), bilateral amygdala (extending into the right putamen), left inferior occipital cortex, and right middle temporal gyrus during aversive versus neutral stimuli. Meta-regressions showed that medication status and comorbidity moderated amygdala, occipital and ventromedial prefrontal cortex hyperactivation, while symptom severity moderated hyperactivation in medial frontal prefrontal and superior parietal regions. In Paper II we showed that unaffected siblings resembled healthy controls in task-related distress, less amygdala activation/altered timing than OCD patients during emotion provocation. During OCD-related emotion regulation siblings showed no significant difference in dmPFC activation versus either OCD patients or healthy controls, but showed more temporo-occipital activation and dmPFC-amygdala connectivity compared to healthy controls. In Paper III we found that unmedicated OCD patients showed more frontoparietal-limbic connectivity before treatment than healthy controls. This, along with sgACC flexibility, was reduced in OCD patients directly after B4DT. Conclusions OCD patients show hyperactivation of the amygdala and related structures, but this characteristic is not directly shared with unaffected siblings during provocation or regulation of emotional information. However, siblings seem to show compensatory activation and connectivity in other areas. The rapid changes in frontoparietal-limbic connectivity and subgenual ACC flexibility suggests that concentrated treatment leads to a more independent and stable network state. OCD is related to subtle alterations in limbic activation and fronto-limbic connectivity during both emotional tasks and resting-state, which seems to vary with comorbidity and is sensitive to treatment
    corecore