466 research outputs found

    Multi-population methods in unconstrained continuous dynamic environments: The challenges

    Get PDF
    Themulti-populationmethod has been widely used to solve unconstrained continuous dynamic optimization problems with the aim of maintaining multiple populations on different peaks to locate and track multiple changing peaks simultaneously. However, to make this approach efficient, several crucial challenging issues need to be addressed, e.g., how to determine the moment to react to changes, how to adapt the number of populations to changing environments, and how to determine the search area of each population. In addition, several other issues, e.g., communication between populations, overlapping search, the way to create multiple populations, detection of changes, and local search operators, should be also addressed. The lack of attention on these challenging issues within multi-population methods hinders the development of multi-population based algorithms in dynamic environments. In this paper, these challenging issues are comprehensively analyzed by a set of experimental studies from the algorithm design point of view. Experimental studies based on a set of popular algorithms show that the performance of algorithms is significantly affected by these challenging issues on the moving peaks benchmark. Keywords: Multi-population methods, dynamic optimization problems, evolutionary computatio

    Enhanced global optimization methods applied to complex fisheries stock assessment models

    Get PDF
    [Abstract] Statistical fisheries models are frequently used by researchers and agencies to understand the behavior of marine ecosystems or to estimate the maximum acceptable catch of different species of commercial interest. The parameters of these models are usually adjusted through the use of optimization algorithms. Unfortunately, the choice of the best optimization method is far from trivial. This work proposes the use of population-based algorithms to improve the optimization process of the Globally applicable Area Disaggregated General Ecosystem Toolbox (Gadget), a flexible framework that allows the development of complex statistical marine ecosystem models. Specifically, parallel versions of the Differential Evolution (DE) and the Particle Swarm Optimization (PSO) methods are proposed. The proposals include an automatic selection of the internal parameters to reduce the complexity of their usage, and a restart mechanism to avoid local minima. The resulting optimization algorithms were called PMA (Parallel Multirestart Adaptive) DE and PMA PSO respectively. Experimental results prove that the new algorithms are faster and produce more accurate solutions than the other parallel optimization methods already included in Gadget. Although the new proposals have been evaluated on fisheries models, there is nothing specific to the tested models in them, and thus they can be also applied to other optimization problems. Moreover, the PMA scheme proposed can be seen as a template that can be easily applied to other population-based heuristics.Xunta de Galicia; ED431C 2017/04Xunta de Galicia; R2016/0

    On the role of metaheuristic optimization in bioinformatics

    Get PDF
    Metaheuristic algorithms are employed to solve complex and large-scale optimization problems in many different fields, from transportation and smart cities to finance. This paper discusses how metaheuristic algorithms are being applied to solve different optimization problems in the area of bioinformatics. While the text provides references to many optimization problems in the area, it focuses on those that have attracted more interest from the optimization community. Among the problems analyzed, the paper discusses in more detail the molecular docking problem, the protein structure prediction, phylogenetic inference, and different string problems. In addition, references to other relevant optimization problems are also given, including those related to medical imaging or gene selection for classification. From the previous analysis, the paper generates insights on research opportunities for the Operations Research and Computer Science communities in the field of bioinformatics

    Dynamic Optimization of Network Routing Problem through Ant Colony Optimization (ACO)

    Get PDF
    Search Based Software Engineering (SBSE) is a new paradigm of Software engineering, which considers software engineering problems as search problems and emphasizes to find out optimal solution for the given set of available solutions using metaheuristic techniques like hill climbing simulated annealing, evolutionary programming and tabu search. On the other hand AI techniques like Swarm particle optimization and Ant colony optimization (ACO) are used to find out solutions for dynamic problems. SBSE is yet not used for dynamic problems. In this study ACO techniques are applied on SBSE problem by considering Network routing problem as case study, in which the nature of problem is dynamic. Keywords: SBSE, ACO, Metaheuristic search techniques, dynamic optimizatio

    Bibliometric of Feature Selection Using Optimization Techniques in Healthcare using Scopus and Web of Science Databases

    Get PDF
    Feature selection technique is an important step in the prediction and classification process, primarily in data mining related aspects or related to medical field. Feature selection is immersive with the errand of choosing a subset of applicable features that could be utilized in developing a prototype. Medical datasets are huge in size; hence some effective optimization techniques are required to produce accurate results. Optimization algorithms are a critical function in medical data mining particularly in identifying diseases since it offers excellent effectiveness in minimum computational expense and time. The classification algorithms also produce superior outcomes when an objective function is built using the feature selection algorithm. The solitary motive of the research paper analysis is to comprehend the reach and utility of optimization algorithms such as the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO) and the Ant Colony Optimization (ACO) in the field of Health care. The aim is to bring efficiency and maximum optimization in the health care sector using the vast information that is already available related to these fields. With the help of data sets that are available in the health care analysis, our focus is to extract the most important features using optimization techniques and work on different algorithms so as to get the most optimized result. Precision largely depends on usefulness of features that are taken into consideration along with finding useful patterns in those features to characterize the main problem. The Performance of the optimized algorithm finds the overall optimum with less function evaluation. The principle target of this examination is to optimize feature selection technique to bring an optimized and efficient model to cater to various health issues. In this research paper, to do bibliometric analysis Scopus and Web of Science databases are used. This bibliometric analysis considers important keywords, datasets, significance of the considered research papers. It also gives details about types, sources of publications, yearly publication trends, significant countries from Scopus and Web of Science. Also, it captures details about co-appearing keywords, authors, source titles through networked diagrams. In a way, this research paper can be useful to researchers who want to contribute in the area of feature selection and optimization in healthcare. From this research paper it is observed that there is a lot scope for research for the considered research area. This kind of research will also be helpful for analyzing pandemic scenarios like COVID-19

    Self-organizing hierarchical particle swarm optimization of correlation filters for object recognition

    Get PDF
    Advanced correlation filters are an effective tool for target detection within a particular class. Most correlation filters are derived from a complex filter equation leading to a closed form filter solution. The response of the correlation filter depends upon the selected values of the optimal trade-off (OT) parameters. In this paper, the OT parameters are optimized using particle swarm optimization with respect to two different cost functions. The optimization has been made generic and is applied to each target separately in order to achieve the best possible result for each scenario. The filters obtained using standard particle swarm optimization (PSO) and hierarchal particle swarm optimization (HPSO) algorithms have been compared for various test images with the filter solutions available in the literature. It has been shown that optimization improves the performance of the filters significantly

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Reactive approach for automating exploration and exploitation in ant colony optimization

    Get PDF
    Ant colony optimization (ACO) algorithms can be used to solve nondeterministic polynomial hard problems. Exploration and exploitation are the main mechanisms in controlling search within the ACO. Reactive search is an alternative technique to maintain the dynamism of the mechanics. However, ACO-based reactive search technique has three (3) problems. First, the memory model to record previous search regions did not completely transfer the neighborhood structures to the next iteration which leads to arbitrary restart and premature local search. Secondly, the exploration indicator is not robust due to the difference of magnitudes in distance matrices for the current population. Thirdly, the parameter control techniques that utilize exploration indicators in their feedback process do not consider the problem of indicator robustness. A reactive ant colony optimization (RACO) algorithm has been proposed to overcome the limitations of the reactive search. RACO consists of three main components. The first component is a reactive max-min ant system algorithm for recording the neighborhood structures. The second component is a statistical machine learning mechanism named ACOustic to produce a robust exploration indicator. The third component is the ACO-based adaptive parameter selection algorithm to solve the parameterization problem which relies on quality, exploration and unified criteria in assigning rewards to promising parameters. The performance of RACO is evaluated on traveling salesman and quadratic assignment problems and compared with eight metaheuristics techniques in terms of success rate, Wilcoxon signed-rank, Chi-square and relative percentage deviation. Experimental results showed that the performance of RACO is superior than the eight (8) metaheuristics techniques which confirmed that RACO can be used as a new direction for solving optimization problems. RACO can be used in providing a dynamic exploration and exploitation mechanism, setting a parameter value which allows an efficient search, describing the amount of exploration an ACO algorithm performs and detecting stagnation situations
    • ā€¦
    corecore