22 research outputs found

    Hard Real-time Communications in Controller Area Network

    Get PDF

    Timing Analysis of the FlexRay Communication Protocol

    Get PDF
    FlexRay will very likely become the de-facto standard for in-vehicle communications. However, before it can be successfully used for safety-critical applications that require predictability, timing analysis techniques are necessary for providing bounds for the message communication times. In this paper, we propose techniques for determining the timing properties of messages transmitted in both the static (ST) and the dynamic (DYN) segments of a FlexRay communication cycle. The analysis techniques for messages are integrated in the context of a holistic schedulability analysis that computes the worst-case response times of all the tasks and messages in the system. We have evaluated the proposed analysis techniques using extensive experiments. 1

    Generalizing List Scheduling for Stochastic Soft Real-time Parallel Applications

    Get PDF
    Advanced architecture processors provide features such as caches and branch prediction that result in improved, but variable, execution time of software. Hard real-time systems require tasks to complete within timing constraints. Consequently, hard real-time systems are typically designed conservatively through the use of tasks? worst-case execution times (WCET) in order to compute deterministic schedules that guarantee task?s execution within giving time constraints. This use of pessimistic execution time assumptions provides real-time guarantees at the cost of decreased performance and resource utilization. In soft real-time systems, however, meeting deadlines is not an absolute requirement (i.e., missing a few deadlines does not severely degrade system performance or cause catastrophic failure). In such systems, a guaranteed minimum probability of completing by the deadline is sufficient. Therefore, there is considerable latitude in such systems for improving resource utilization and performance as compared with hard real-time systems, through the use of more realistic execution time assumptions. Given probability distribution functions (PDFs) representing tasks? execution time requirements, and tasks? communication and precedence requirements, represented as a directed acyclic graph (DAG), this dissertation proposes and investigates algorithms for constructing non-preemptive stochastic schedules. New PDF manipulation operators developed in this dissertation are used to compute tasks? start and completion time PDFs during schedule construction. PDFs of the schedules? completion times are also computed and used to systematically trade the probability of meeting end-to-end deadlines for schedule length and jitter in task completion times. Because of the NP-hard nature of the non-preemptive DAG scheduling problem, the new stochastic scheduling algorithms extend traditional heuristic list scheduling and genetic list scheduling algorithms for DAGs by using PDFs instead of fixed time values for task execution requirements. The stochastic scheduling algorithms also account for delays caused by communication contention, typically ignored in prior DAG scheduling research. Extensive experimental results are used to demonstrate the efficacy of the new algorithms in constructing stochastic schedules. Results also show that through the use of the techniques developed in this dissertation, the probability of meeting deadlines can be usefully traded for performance and jitter in soft real-time systems

    An application of an ethernet based protocol for communication and control in automated manufacturing

    Get PDF
    The exchange of information in the industrial environment is essential in order to achieve complete integration and control of manufacturing processes. At present the majority of devices present in the shop floor environment are still used as stand alone machines. They do not take advantage of the possibilities offered by a communication link to improve the manufacturing process. The subject of this research has been centered on the development of a simple, flexible and inexpensive support system for communication and control of manufacturing processes. As a result, a system with these features has been proposed and implemented on a simulated workcell. The area footwear manufacturing was chosen for modelling the workcell. The components of the manufacturing support system were developed using an object oriented approach which allowed modularity and software reuse. In order to achieve communication between the components, a communication protocol was developed following the process defined in the rapid protocol implementation framework. Ethernet was selected for implementing the lower levels of the protocol. Java, a new object oriented programming language used for the implementation of the system, showed that it could became a promising language for the implementation of manufacturing applications. In particular the platform independence feature of the language allows the immediate porting of applications to systems with different features. The manufacturing cell simulation had shown that the times associated with the manufacturing support system operations are compatible for its use in applications where the response times are in the order of one second

    Analysis, evaluation and improvement of RT-WMP for real-time and QoS wireless communication: Applications in confined environments

    Get PDF
    En los ultimos años, la innovación tecnológica, la característica de flexibilidad y el rápido despligue de las redes inalámbricas, han favorecido la difusión de la redes móviles ad-hoc (MANETs), capaces de ofrecer servicios para tareas específicas entre nodos móviles. Los aspectos relacionados al dinamismo de la topología móvil y el acceso a un medio compartido por naturaleza hacen que sea preciso enfrentarse a clases de problemas distintos de los relacionados con la redes cableadas, atrayendo de este modo el interés de la comunidad científica. Las redes ad-hoc suelen soportar tráfico con garantía de servicio mínimo y la mayor parte de las propuestas presentes en literatura tratan de dar garantías de ancho de banda o minimizar el retardo de los mensajes. Sin embargo hay situaciones en las que estas garantías no son suficientes. Este es el caso de los sistemas que requieren garantías mas fuertes en la entrega de los mensajes, como es el caso de los sistemas de tiempo real donde la pérdida o el retraso de un sólo mensaje puede provocar problemas graves. Otras aplicaciones como la videoconferencia, cada vez más extendidas, implican un tráfico de datos con requisitos diferentes, como la calidad de servicio (QoS). Los requisitos de tiempo real y de QoS añaden nuevos retos al ya exigente servicio de comunicación inalámbrica entre estaciones móviles de una MANET. Además, hay aplicaciones en las que hay que tener en cuenta algo más que el simple encaminamiento de los mensajes. Este es el caso de aplicaciones en entornos subterráneos, donde el conocimiento de la evolución de propagación de la señal entre los diferentes nodos puede ser útil para mejorar la calidad de servicio y mantener la conectividad en cada momento. A pesar de ésto, dentro del amplio abanicos de propuestas presente en la literatura, existen un conjunto de limitaciones que van de el mero uso de protocolos simulados a propuestas que no tienen en cuenta entornos no convencionales o que resultan aisladas desde el punto de vista de la integración en sistemas complejos. En esta tesis doctoral, se propone un estudio completo sobre un plataforma inalámbrica de tiempo real, utilizando el protocolo RT-WMP capaz de gestionar trafíco multimedia al mismo tiempo y adaptado al entorno de trabajo. Se propone una extensión para el soporte a los datos con calidad de servicio sin limitar las caractaristícas temporales del protocolo básico. Y con el fin de tener en cuenta el efecto de la propagación de la señal, se caracteriza el entorno por medio de un conjunto de restricciones de conectividad. La solución ha sido desarrollada y su validez ha sido demostrada extensamente en aplicaciones reales en entornos subterráneos, en redes malladas y aplicaciones robóticas

    Methodologies for CIM systems integration in small batch manufacturing

    Get PDF
    This thesis is concerned with identifying the problems and constraints faced by small batch manufacturing companies during the implementation of Computer Integrated Manufacturing (CIM). The main aim of this work is to recommend generic solutions to these problems with particular regard to those constraints arising because of the need for ClM systems integration involving both new and existing systems and procedures. The work has involved the application of modern computer technologies, including suitable hardware and software tools, in an industrial environment. Since the research has been undertaken with particular emphasis on the industrial implementor's viewpoint, it is supported by the results of a two phased implementation of computer based control systems within the machine shop of a manufacturing company. This involved the specific implementation of a Distributed Numerical Control system on a single machine in a group technology cell of machines followed by the evolution of this system into Cell and Machine Management Systems to provide a comprehensive decision support and information distribution facility for the foremen and uperators within the cell. The work also required the integration of these systems with existing Factory level manufacturing control and CADCAM functions. Alternative approaches have been investigated which may have been applicable under differing conditions and the implications that this specific work has for CIM systems integration in small batch manufacturing companies evaluated with regard not only to the users within an industrial company but also the systems suppliers external to the company. The work has resulted in certain generic contributions to knowledge by complementing ClM systems integration research with regard to problems encountered; cost implications; the use of appropriate methodologies including the role of emerging international standard methods, tools and technologies and also the importance of 'human integration' when implementing CIM systems in a real industrial situation

    Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    Get PDF
    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking

    Performance Improvements for FDDI and CSMA/CD Protocols

    Get PDF
    The High-Performance Computing Initiative from the White House Office of Science and Technology Policy has defined 20 major challenges in science and engineering which are dependent on the solutions to a number of high-performance computing problems. One of the major areas of focus of this initiative is the development of gigabit rate networks to be used in environments such as the space station or a National Research and Educational Network (NREN). The strategy here is to use existing network designs as building blocks for achieving higher rates, with the ultimate goal being a gigabit rate network. Two strategies which contribute to achieving this goal are examined in detail.1 FDDI2 is a token ring network based on fiber optics capable of a 100 Mbps rate. Both media access (MAC) and physical layer modifications are considered. A method is presented which allows one to determine maximum utilization based on the token-holding timer settings. Simulation results show that employing the second counter-rotating ring in combination with destination removal has a multiplicative effect greater than the effect which either of the factors have individually on performance. Two 100 Mbps rings can handle loads in the range of 400 to 500 Mbps for traffic with a uniform distribution and fixed packet size. Performance is dependent on the number of nodes, improving as the number increases. A wide range of environments are examined to illustrate robustness, and a method of implementation is discussed
    corecore