828 research outputs found

    Performanzanalyse für Multi-Core Multi-Mode Systeme mit gemeinsam genutzten Ressourcen - Verfahren und Anwendung auf AUTOSAR -

    Get PDF
    In order to implement multi-core systems for single-mode and multi-mode real-time applications, as can be found in modern automobiles, their development process requires appropriate methods and tools for timing and performance verification. In this context, this thesis proposes first novel approaches for the analysis of worst-case blocking-times and response-times for single-mode real-time applications that share resources in partitioned multi-core systems. For this purpose a compositional performance analysis methodology is adopted and extended to take into account the contention of tasks on the processor cores and on the shared resources under different combinations of processor scheduling policies and shared resource arbitration strategies. Highly relevant is the compatibility of the proposed analysis methods with the specifications of the automotive AUTOSAR standard, which defines the combination of (1) preemptive, non-preemptive and cooperative core local scheduling with (2) lock-based arbitration of core local shared resources and spinlock-based arbitration of inter-core shared resources. Further, this thesis proposes novel timing analysis solutions for multi-mode distributed real-time systems. For such systems, the settling time of a mode change, called mode change transition latency, is identified as an important system parameter that has been neglected before. This thesis contributes a novel analysis algorithm which gives a maximum bound on each mode change transition latency of multi-mode distributed applications. Knowing the settling time of each mode change, the impact of multiple mode changes and of the possible overload situations can be handled in the early development phases of real-time systems. Finally, an approach for safely handling shared resources across mode changes is presented and a corresponding timing analysis method is contributed. The new analysis solution combines modeling and analysis elements of the multi-core and multi-mode related analysis solutions and focuses on the specification of the AUTOSAR standard. This enables system designers to handle the timing behavior of more complex systems in which the problems of mode management, multi-core scheduling and shared resource arbitration coexist. The applicability and usefulness of the contributed analysis solutions are highlighted by experimental evaluations, which are enabled by the implementation of the proposed analysis methods in a performance analysis tool framework.Um Multicore-Systeme für die Umsetzung zeitkritischer Single- und Multi-Mode Anwendungen in sicherheitskritischen Umgebungen einsetzen zu können, werden in dem Entwicklungsprozess geeignete Analysemethoden und Tools zur Bestimmung des Zeitverhaltens und der Performanz benötigt. Als erster Beitrag dieser Dissertation werden neue Analyseverfahren eingeführt, um die Worst-Case-Antwortzeiten und -Blockierungszeiten für statische Echtzeitanwendungen in Single-Mode eingebetteten Multicore-Systemen mit gemeinsam genutzten Ressourcen zu bestimmen. Die entwickelten Verfahren nutzen einen existierenden kompositionellen Performanzanalyseansatz und erweitern diesen, um verschiedene Kombinationen von partitionierenden Multiprozessor-Schedulingverfahren und –Synchronisationsmechanismen behandeln zu können. Besonders praxisrelevant ist die Möglichkeit, die Kombination von (1) preemptives, nicht-preemptives sowie kooperatives Prozessor-Scheduling und (2) Spinlock-basierten Synchronisationsmechanismen zu analysieren, die heute in AUTOSAR-konformen Automotive-Softwarearchitekturen standardisiert sind. Als zweiter Beitrag wird in dieser Dissertation ein neuer Ansatz für die Analyse der zeitlichen Auswirkungen von mehreren Szenarienübergängen in vernetzten Multi-Mode eingebetteten Systemen eingeführt. Als erste konstruktive Maßnahme ermöglicht das in dieser Arbeit präsentierte Verfahren die Berechnung der Einschwingzeit jedes Szenarioübergangs und leistet dadurch eine wichtige Hilfestellung beim Systementwurf. Auf diese Weise können die Auswirkungen der Szenarienübergänge, einschließlich der zeitlich begrenzten Überlastsituationen, kontrolliert und in den Systementwurf frühzeitig einbezogen werden. Als letzter Beitrag dieser Dissertation wird ein Ansatz für die Handhabung der Zugriffskonflikte auf gemeinsam genutzten Ressourcen in Multi-Mode eingebetteten Multicore-Systemen präsentiert und eine entsprechende Analysemethode eingeführt. Die neue Analyse kombiniert Modellierungs- und Analyse-Elemente der vorher in dieser Arbeit eingeführten Analyseansätze, und ermöglicht die Untersuchung des ungünstigsten Zeitverhaltens viel komplexer eingebetteten Multicore-Systemen. Dabei werden erneut Spezifikationen der AUTOSAR-Standards berücksichtigt. Nicht zuletzt werden alle Analysemethoden in eine Toolumgebung implementiert und für verschiedene Experimente, die deren praktische Anwendbarkeit hervorheben, angewendet

    SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space Exploration

    Get PDF
    International audienc

    Multi-resource management in embedded real-time systems

    Get PDF
    This thesis addresses the problem of online multi-resource management in embedded real-time systems. It focuses on three research questions. The first question concentrates on how to design an efficient hierarchical scheduling framework for supporting independent development and analysis of component based systems, to provide temporal isolation between components. The second question investigates how to change the mapping of resources to tasks and components during run-time efficiently and predictably, and how to analyze the latency of such a system mode change in systems comprised of several scalable components. The third question deals with the scheduling and analysis of a set of parallel-tasks with real-time constraints which require simultaneous access to several different resources. For providing temporal isolation we chose a reservation-based approach. We first focused on processor reservations, where timed events play an important role. Common examples are task deadlines, periodic release of tasks, budget replenishment and budget depletion. Efficient timer management is therefore essential. We investigated the overheads in traditional timer management techniques and presented a mechanism called Relative Timed Event Queues (RELTEQ), which provides an expressive set of primitives at a low processor and memory overhead. We then leveraged RELTEQ to create an efficient, modular and extensible design for enhancing a real-time operating system with periodic tasks, polling, idling periodic and deferrable servers, and a two-level fixed-priority Hierarchical Scheduling Framework (HSF). The HSF design provides temporal isolation and supports independent development of components by separating the global and local scheduling, and allowing each server to define a dedicated scheduler. Furthermore, the design addresses the system overheads inherent to an HSF and prevents undesirable interference between components. It limits the interference of inactive servers on the system level by means of wakeup events and a combination of inactive server queues with a stopwatch queue. Our implementation is modular and requires only a few modifications of the underlying operating system. We then investigated scalable components operating in a memory-constrained system. We first showed how to reduce the memory requirements in a streaming multimedia application, based on a particular priority assignment of the different components along the processing chain. Then we investigated adapting the resource provisions to tasks during runtime, referred to as mode changes. We presented a novel mode change protocol called Swift Mode Changes, which relies on Fixed Priority with Deferred preemption Scheduling to reduce the mode change latency bound compared to existing protocols based on Fixed Priority Preemptive Scheduling. We then presented a new partitioned parallel-task scheduling algorithm called Parallel-SRP (PSRP), which generalizes MSRP for multiprocessors, and the corresponding schedulability analysis for the problem of multi-resource scheduling of parallel tasks with real-time constraints. We showed that the algorithm is deadlock-free, derived a maximum bound on blocking, and used this bound as a basis for a schedulability test. We then demonstrated how PSRP can exploit the inherent parallelism of a platform comprised of multiple heterogeneous resources. Finally, we presented Grasp, which is a visualization toolset aiming to provide insight into the behavior of complex real-time systems. Its flexible plugin infrastructure allows for easy extension with custom visualization and analysis techniques for automatic trace verification. Its capabilities include the visualization of hierarchical multiprocessor systems, including partitioned and global multiprocessor scheduling with migrating tasks and jobs, communication between jobs via shared memory and message passing, and hierarchical scheduling in combination with multiprocessor scheduling. For tracing distributed systems with asynchronous local clocks Grasp also supports the synchronization of traces from different processors during the visualization and analysis

    A Framework for Hierarchical Scheduling on Multiprocessors: From Application Requirements to Run-Time Allocation

    Get PDF
    Hierarchical scheduling is a promising methodology for designing and deploying real-time applications, since it enables component-based design and analysis, and supports temporal isolation among competing applications. In hierarchical scheduling an application is described by means of a temporal interface. The designer faces the problem of how to derive the interface parameters so to make the application schedulable, at the same time minimizing the waste of computational resources. The problem is particularly relevant in multiprocessor systems, where it is not clear yet how the interface parameters influence the schedulability of the application and allocation on the physical platform. In this paper we present three novel contributions to hierarchical scheduling for multiprocessor systems. First, we propose the Bounded-Delay Multipartition (BDM), a new interface specification model that allows the designer to balance resource usage versus flexibility in selecting the virtual platform parameters. Second, we explore the schedulability region of a real-time application on top of a generic virtual platform, and derive the interface parameter. Finally, we propose Fluid Best-Fit, an algorithm that takes advantage of the extra degree of flexibility provided by the BDM to compute the virtual platform parameters and allocate it on the physical platform. The performance of the algorithm is evaluated by simulations

    Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

    Get PDF
    Memory-centric scheduling attempts to guarantee temporal predictability on commercial-off-the-shelf (COTS) multiprocessor systems to exploit their high performance for real-time applications. Several solutions proposed in the real-time literature have hardware requirements that are not easily satisfied by modern COTS platforms, like hardware support for strict memory partitioning or the presence of scratchpads. However, even without said hardware support, it is possible to design an efficient memory-centric scheduler. In this article, we design, implement, and analyze a memory-centric scheduler for deterministic memory management on COTS multiprocessor platforms without any hardware support. Our approach uses fixed-priority scheduling and proposes a global "memory preemption" scheme to boost real-time schedulability. The proposed scheduling protocol is implemented in the Jailhouse hypervisor and Erika real-time kernel. Measurements of the scheduler overhead demonstrate the applicability of the proposed approach, and schedulability experiments show a 20% gain in terms of schedulability when compared to contention-based and static fair-share approaches

    Design of testbed and emulation tools

    Get PDF
    The research summarized was concerned with the design of testbed and emulation tools suitable to assist in projecting, with reasonable accuracy, the expected performance of highly concurrent computing systems on large, complete applications. Such testbed and emulation tools are intended for the eventual use of those exploring new concurrent system architectures and organizations, either as users or as designers of such systems. While a range of alternatives was considered, a software based set of hierarchical tools was chosen to provide maximum flexibility, to ease in moving to new computers as technology improves and to take advantage of the inherent reliability and availability of commercially available computing systems

    Performanzanalyse von Multiprozessor-Echtzeitsystemen mit gemeinsamen Ressourcen

    Get PDF
    corecore