5,491 research outputs found

    Fermi volume evolution and crystal field excitations in heavy-fermion compounds probed by time-domain terahertz spectroscopy

    Full text link
    We measure the quasiparticle weight in the heavy-fermion compound CeCu6−x_{6-x}Aux_{x} (x=0, 0.1x=0,\ 0.1) by time-resolved THz spectroscopy for temperatures from 2 up to 300\,K. This method distinguishes contributions from the heavy Kondo band and from the crystal-electric-field satellite bands by different THz response delay times. We find that the formation of heavy bands is controlled by an exponentially enhanced, high-energy Kondo scale once the crystal-electric-field states become thermally occupied. We corroborate these observations by temperature-dependent dynamical mean-field calculations for the multi-orbital Anderson lattice model and discuss consequences for quantum critical scenarios.Comment: Published version, 6 pages (including references), 5 figures, Supplemental Material (2 pages) adde

    Itinerant quantum critical point with frustration and non-Fermi-liquid

    Get PDF
    Employing the self-learning quantum Monte Carlo algorithm, we investigate the frustrated transverse-field triangle-lattice Ising model coupled to a Fermi surface. Without fermions, the spin degrees of freedom undergoes a second-order quantum phase transition between paramagnetic and clock-ordered phases. This quantum critical point (QCP) has an emergent U(1) symmetry and thus belongs to the (2+1)D XY universality class. In the presence of fermions, spin fluctuations introduce effective interactions among fermions and distort the bare Fermi surface towards an interacting one with hot spots and Fermi pockets. Near the QCP, non-Fermi-liquid behavior are observed at the hot spots, and the QCP is rendered into a different universality with Hertz-Millis type exponents. The detailed properties of this QCP and possibly related experimental systems are also discussed.Comment: 9 pages, 8 figure

    Theoretical analysis of spectral gain in a THz quantum cascade laser: prospects for gain at 1 THz

    Full text link
    In a recent Letter [Appl. Phys. Lett. 82, 1015 (2003)], Williams et al. reported the development of a terahertz quantum cascade laser operating at 3.4 THz or 14.2 meV. We have calculated and analyzed the gain spectra of the quantum cascade structure described in their work, and in addition to gain at the reported lasing energy of ~= 14 meV, we have discovered substantial gain at a much lower energy of around 5 meV or just over 1 THz. This suggests an avenue for the development of a terahertz laser at this lower energy, or of a two-color terahertz laser.Comment: in press APL, tentative publication date 29 Sep 200

    Optical Transistor for an Amplification of Radiation in a Broadband THz Domain

    Get PDF
    We propose a new type of optical transistor for a broadband amplification of THz radiation. It is made of a graphene--superconductor hybrid, where electrons and Cooper pairs couple by Coulomb forces. The transistor operates via the propagation of surface plasmons in both layers, and the origin of amplification is the quantum capacitance of graphene. It leads to THz waves amplification, the negative power absorption, and as a result, the system yields positive gain, and the hybrid acts like an optical transistor, operating with the terahertz light. It can, in principle, amplify even a whole spectrum of chaotic signals (or noise), that is required for numerous biological applications.Comment: 7 pages, 3 figure

    A multi-purpose method for analysis of spur gear tooth loading

    Get PDF
    A large digitized approach was developed for the static and dynamic load analysis of spur gearing. An iterative procedure was used to calculate directly the "variable-variable" gear mesh stiffness as a function of transmitted load, gear tooth profile errors, gear tooth deflections and gear hub torsional deformation, and position of contacting profile points. The developed approach can be used to analyze the loads, Hertz stresses, and PV for the normal and high contrast ratio gearing, presently the modeling is limited to the condition that for a given gear all teeth have identical spacing and profiles (with or without surface imperfections). Certain types of simulated sinusoidal profile errors and pitting can cause interruptions of the gear mesh stiffness function and, thus, increase the dynamic loads in spur gearing. In addition, a finite element stress and mesh subprogram was developed for future introduction into the main program for calculating the gear tooth bending stresses under dynamic loads

    First-principles Analysis of Photo-current in Graphene PN Junctions

    Full text link
    We report a first principles investigation of photocurrent generation by graphene PN junctions. The junctions are formed by either chemically doping with nitrogen and boron atoms, or by controlling gate voltages. Non-equilibrium Green's function (NEGF) formalism combined with density functional theory (DFT) is applied to calculate the photo-response function. The graphene PN junctions show a broad band photo-response including the terahertz range. The dependence of the response on the angle between the light polarization vector and the PN interface is determined. Its variation against photon energy EphE_{ph} is calculated in the visible range. The essential properties of chemically doped and gate-controlled PN junctions are similar, but the former shows fingerprints of dopant distribution.Comment: 7 pages, 6 figure
    • …
    corecore