5,771 research outputs found

    Detection of Malware Attacks on Virtual Machines for a Self-Heal Approach in Cloud Computing using VM Snapshots

    Get PDF
    Cloud Computing strives to be dynamic as a service oriented architecture. The services in the SoA are rendered in terms of private, public and in many other commercial domain aspects. These services should be secured and thus are very vital to the cloud infrastructure. In order, to secure and maintain resilience in the cloud, it not only has to have the ability to identify the known threats but also to new challenges that target the infrastructure of a cloud. In this paper, we introduce and discuss a detection method of malwares from the VM logs and corresponding VM snapshots are classified into attacked and non-attacked VM snapshots. As snapshots are always taken to be a backup in the backup servers, especially during the night hours, this approach could reduce the overhead of the backup server with a self-healing capability of the VMs in the local cloud infrastructure. A machine learning approach at the hypervisor level is projected, the features being gathered from the API calls of VM instances in the IaaS level of cloud service. Our proposed scheme can have a high detection accuracy of about 93% while having the capability to classify and detect different types of malwares with respect to the VM snapshots. Finally the paper exhibits an algorithm using snapshots to detect and thus to self-heal using the monitoring components of a particular VM instances applied to cloud scenarios. The self-healing approach with machine learning algorithms can determine new threats with some prior knowledge of its functionality

    Detection of Malware Attacks on Virtual Machines for a Self-Heal Approach in Cloud Computing using VM Snapshots

    Get PDF
    Cloud Computing strives to be dynamic as a service oriented architecture. The services in the SoA are rendered in terms of private, public and in many other commercial domain aspects. These services should be secured and thus are very vital to the cloud infrastructure. In order, to secure and maintain resilience in the cloud, it not only has to have the ability to identify the known threats but also to new challenges that target the infrastructure of a cloud. In this paper, we introduce and discuss a detection method of malwares from the VM logs and corresponding VM snapshots are classified into attacked and non-attacked VM snapshots. As snapshots are always taken to be a backup in the backup servers, especially during the night hours, this approach could reduce the overhead of the backup server with a self-healing capability of the VMs in the local cloud infrastructure. A machine learning approach at the hypervisor level is projected, the features being gathered from the API calls of VM instances in the IaaS level of cloud service. Our proposed scheme can have a high detection accuracy of about 93% while having the capability to classify and detect different types of malwares with respect to the VM snapshots. Finally the paper exhibits an algorithm using snapshots to detect and thus to self-heal using the monitoring components of a particular VM instances applied to cloud scenarios. The self-healing approach with machine learning algorithms can determine new threats with some prior knowledge of its functionality

    A Taxonomy of Virtualization Security Issues in Cloud Computing Environments

    Get PDF
    Objectives: To identify the main challenges and security issues of virtualization in cloud computing environments. It reviews the alleviation techniques for improving the security of cloud virtualization systems. Methods/ Statistical Analysis: Virtualization is a fundamental technology for cloud computing, and for this reason, any cloud vulnerabilities and threats affect virtualization. In this study, the systematic literature review is performed to find out the vulnerabilities and risks of virtualization in cloud computing and to identify threats, and attacks result from those vulnerabilities. Furthermore, we discover and analyze the effective mitigation techniques that are used to protect, secure, and manage virtualization environments. Findings: Thirty vulnerabilities are identified, explained, and classified into six proposed classes. Furthermore, fifteen main virtualization threats and attacks ar defined according to exploited vulnerabilities in a cloud environment. Application/Improvements: A set of common mitigation solutions are recognized and discovered to alleviate the virtualization security risks. These reviewed techniques are analyzed and evaluated according to five specified security criteria

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Malware Detection in Cloud Computing Infrastructures

    Get PDF
    Cloud services are prominent within the private, public and commercial domains. Many of these services are expected to be always on and have a critical nature; therefore, security and resilience are increasingly important aspects. In order to remain resilient, a cloud needs to possess the ability to react not only to known threats, but also to new challenges that target cloud infrastructures. In this paper we introduce and discuss an online cloud anomaly detection approach, comprising dedicated detection components of our cloud resilience architecture. More specifically, we exhibit the applicability of novelty detection under the one-class support Vector Machine (SVM) formulation at the hypervisor level, through the utilisation of features gathered at the system and network levels of a cloud node. We demonstrate that our scheme can reach a high detection accuracy of over 90% whilst detecting various types of malware and DoS attacks. Furthermore, we evaluate the merits of considering not only system-level data, but also network-level data depending on the attack type. Finally, the paper shows that our approach to detection using dedicated monitoring components per VM is particularly applicable to cloud scenarios and leads to a flexible detection system capable of detecting new malware strains with no prior knowledge of their functionality or their underlying instructions. Index Terms—Security, resilience, invasive software, multi-agent systems, network-level security and protection

    Emerging & Unconventional Malware Detection Using a Hybrid Approach

    Get PDF
    Advancement in computing technologies made malware development easier for malware authors. Unconventional computing paradigms such as cloud computing, the internet of things, In-memory computing, etc. introduced new ways to develop more complex and effective malware. To demonstrate this, we designed and implemented a fileless malware that could infect any device that supports JavaScript and HTML5. In addition, another proof-of-concept is implemented that signifies the security threat of in-memory malware for in-memory data storage and computing platforms. Furthermore, a detailed analysis of unconventional malware has been performed using current state-of-the-art malware analysis and detection techniques. Our analysis shows that, by utilizing the unique characteristics of emerging technologies, malware attacks could easily deceive the anti-malware tools and evade themselves from detection. This clearly demonstrates the need for an innovative and effective detection mechanism. Because of the limitations of existing techniques, we propose a hybrid approach using specification-based and behavioral analysis techniques together as an effective solution against unconventional and emerging malware instances. Our approach begins with the specification development where we present the way of writing it in a succinct manner to describe the expected behavior of the application. Moreover, the behavior monitoring component of our approach makes the detection mechanism effective enough by matching the actual behavior with pre-defined specifications at run-time and alarms the system if any action violates the expected behavior. We demonstrate the effectiveness of the proposed approach by applying it for the detection of in-memory malware that threatens the HazelCast in-memory data grid platform. In our experiments, we evaluated the performance and effectiveness of the approach by considering the possible use cases where in-memory malware could affect the data present in the storage space of HazelCast IMDG

    Cross-VM network attacks & their countermeasures within cloud computing environments

    Get PDF
    Cloud computing is a contemporary model in which the computing resources are dynamically scaled-up and scaled-down to customers, hosted within large-scale multi-tenant systems. These resources are delivered as improved, cost-effective and available upon request to customers. As one of the main trends of IT industry in modern ages, cloud computing has extended momentum and started to transform the mode enterprises build and offer IT solutions. The primary motivation in using cloud computing model is cost-effectiveness. These motivations can compel Information and Communication Technologies (ICT) organizations to shift their sensitive data and critical infrastructure on cloud environments. Because of the complex nature of underlying cloud infrastructure, the cloud environments are facing a large number of challenges of misconfigurations, cyber-attacks, root-kits, malware instances etc which manifest themselves as a serious threat to cloud environments. These threats noticeably decline the general trustworthiness, reliability and accessibility of the cloud. Security is the primary concern of a cloud service model. However, a number of significant challenges revealed that cloud environments are not as much secure as one would expect. There is also a limited understanding regarding the offering of secure services in a cloud model that can counter such challenges. This indicates the significance of the fact that what establishes the threat in cloud model. One of the main threats in a cloud model is of cost-effectiveness, normally cloud providers reduce cost by sharing infrastructure between multiple un-trusted VMs. This sharing has also led to several problems including co-location attacks. Cloud providers mitigate co-location attacks by introducing the concept of isolation. Due to this, a guest VM cannot interfere with its host machine, and with other guest VMs running on the same system. Such isolation is one of the prime foundations of cloud security for major public providers. However, such logical boundaries are not impenetrable. A myriad of previous studies have demonstrated how co-resident VMs could be vulnerable to attacks through shared file systems, cache side-channels, or through compromising of hypervisor layer using rootkits. Thus, the threat of cross-VM attacks is still possible because an attacker uses one VM to control or access other VMs on the same hypervisor. Hence, multiple methods are devised for strategic VM placement in order to exploit co-residency. Despite the clear potential for co-location attacks for abusing shared memory and disk, fine grained cross-VM network-channel attacks have not yet been demonstrated. Current network based attacks exploit existing vulnerabilities in networking technologies, such as ARP spoofing and DNS poisoning, which are difficult to use for VM-targeted attacks. The most commonly discussed network-based challenges focus on the fact that cloud providers place more layers of isolation between co-resided VMs than in non-virtualized settings because the attacker and victim are often assigned to separate segmentation of virtual networks. However, it has been demonstrated that this is not necessarily sufficient to prevent manipulation of a victim VM’s traffic. This thesis presents a comprehensive method and empirical analysis on the advancement of co-location attacks in which a malicious VM can negatively affect the security and privacy of other co-located VMs as it breaches the security perimeter of the cloud model. In such a scenario, it is imperative for a cloud provider to be able to appropriately secure access to the data such that it reaches to the appropriate destination. The primary contribution of the work presented in this thesis is to introduce two innovative attack models in leading cloud models, impersonation and privilege escalation, that successfully breach the security perimeter of cloud models and also propose countermeasures that block such types of attacks. The attack model revealed in this thesis, is a combination of impersonation and mirroring. This experimental setting can exploit the network channel of cloud model and successfully redirects the network traffic of other co-located VMs. The main contribution of this attack model is to find a gap in the contemporary network cloud architecture that an attacker can exploit. Prior research has also exploited the network channel using ARP poisoning, spoofing but all such attack schemes have been countered as modern cloud providers place more layers of security features than in preceding settings. Impersonation relies on the already existing regular network devices in order to mislead the security perimeter of the cloud model. The other contribution presented of this thesis is ‘privilege escalation’ attack in which a non-root user can escalate a privilege level by using RoP technique on the network channel and control the management domain through which attacker can manage to control the other co-located VMs which they are not authorized to do so. Finally, a countermeasure solution has been proposed by directly modifying the open source code of cloud model that can inhibit all such attacks

    A smart resource management mechanism with trust access control for cloud computing environment

    Full text link
    The core of the computer business now offers subscription-based on-demand services with the help of cloud computing. We may now share resources among multiple users by using virtualization, which creates a virtual instance of a computer system running in an abstracted hardware layer. It provides infinite computing capabilities through its massive cloud datacenters, in contrast to early distributed computing models, and has been incredibly popular in recent years because to its continually growing infrastructure, user base, and hosted data volume. This article suggests a conceptual framework for a workload management paradigm in cloud settings that is both safe and performance-efficient. A resource management unit is used in this paradigm for energy and performing virtual machine allocation with efficiency, assuring the safe execution of users' applications, and protecting against data breaches brought on by unauthorised virtual machine access real-time. A secure virtual machine management unit controls the resource management unit and is created to produce data on unlawful access or intercommunication. Additionally, a workload analyzer unit works simultaneously to estimate resource consumption data to help the resource management unit be more effective during virtual machine allocation. The suggested model functions differently to effectively serve the same objective, including data encryption and decryption prior to transfer, usage of trust access mechanism to prevent unauthorised access to virtual machines, which creates extra computational cost overhead

    A survey of denial-of-service and distributed denial of service attacks and defenses in cloud computing

    Get PDF
    Cloud Computing is a computingmodel that allows ubiquitous, convenient and on-demand access to a shared pool of highly configurable resources (e.g., networks, servers, storage, applications and services). Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks are serious threats to the Cloud services’ availability due to numerous new vulnerabilities introduced by the nature of the Cloud, such as multi-tenancy and resource sharing. In this paper, new types of DoS and DDoS attacks in Cloud Computing are explored, especially the XML-DoS and HTTP-DoS attacks, and some possible detection and mitigation techniques are examined. This survey also provides an overview of the existing defense solutions and investigates the experiments and metrics that are usually designed and used to evaluate their performance, which is helpful for the future research in the domain
    • 

    corecore