286 research outputs found

    Reservation-Based Federated Scheduling for Parallel Real-Time Tasks

    Full text link
    This paper considers the scheduling of parallel real-time tasks with arbitrary-deadlines. Each job of a parallel task is described as a directed acyclic graph (DAG). In contrast to prior work in this area, where decomposition-based scheduling algorithms are proposed based on the DAG-structure and inter-task interference is analyzed as self-suspending behavior, this paper generalizes the federated scheduling approach. We propose a reservation-based algorithm, called reservation-based federated scheduling, that dominates federated scheduling. We provide general constraints for the design of such systems and prove that reservation-based federated scheduling has a constant speedup factor with respect to any optimal DAG task scheduler. Furthermore, the presented algorithm can be used in conjunction with any scheduler and scheduling analysis suitable for ordinary arbitrary-deadline sporadic task sets, i.e., without parallelism

    k2U: A General Framework from k-Point Effective Schedulability Analysis to Utilization-Based Tests

    Full text link
    To deal with a large variety of workloads in different application domains in real-time embedded systems, a number of expressive task models have been developed. For each individual task model, researchers tend to develop different types of techniques for deriving schedulability tests with different computation complexity and performance. In this paper, we present a general schedulability analysis framework, namely the k2U framework, that can be potentially applied to analyze a large set of real-time task models under any fixed-priority scheduling algorithm, on both uniprocessor and multiprocessor scheduling. The key to k2U is a k-point effective schedulability test, which can be viewed as a "blackbox" interface. For any task model, if a corresponding k-point effective schedulability test can be constructed, then a sufficient utilization-based test can be automatically derived. We show the generality of k2U by applying it to different task models, which results in new and improved tests compared to the state-of-the-art. Analogously, a similar concept by testing only k points with a different formulation has been studied by us in another framework, called k2Q, which provides quadratic bounds or utilization bounds based on a different formulation of schedulability test. With the quadratic and hyperbolic forms, k2Q and k2U frameworks can be used to provide many quantitive features to be measured, like the total utilization bounds, speed-up factors, etc., not only for uniprocessor scheduling but also for multiprocessor scheduling. These frameworks can be viewed as a "blackbox" interface for schedulability tests and response-time analysis

    Timing Analysis for DAG-based and GFP Scheduled Tasks

    Full text link
    Modern embedded systems have made the transition from single-core to multi-core architectures, providing performance improvement via parallelism rather than higher clock frequencies. DAGs are considered among the most generic task models in the real-time domain and are well suited to exploit this parallelism. In this paper we provide a schedulability test using response-time analysis exploiting exploring and bounding the self interference of a DAG task. Additionally we bound the interference a high priority task has on lower priority ones

    A C-DAG task model for scheduling complex real-time tasks on heterogeneous platforms: preemption matters

    Full text link
    Recent commercial hardware platforms for embedded real-time systems feature heterogeneous processing units and computing accelerators on the same System-on-Chip. When designing complex real-time application for such architectures, the designer needs to make a number of difficult choices: on which processor should a certain task be implemented? Should a component be implemented in parallel or sequentially? These choices may have a great impact on feasibility, as the difference in the processor internal architectures impact on the tasks' execution time and preemption cost. To help the designer explore the wide space of design choices and tune the scheduling parameters, in this paper we propose a novel real-time application model, called C-DAG, specifically conceived for heterogeneous platforms. A C-DAG allows to specify alternative implementations of the same component of an application for different processing engines to be selected off-line, as well as conditional branches to model if-then-else statements to be selected at run-time. We also propose a schedulability analysis for the C-DAG model and a heuristic allocation algorithm so that all deadlines are respected. Our analysis takes into account the cost of preempting a task, which can be non-negligible on certain processors. We demonstrate the effectiveness of our approach on a large set of synthetic experiments by comparing with state of the art algorithms in the literature

    Towards an OpenMP Specification for Critical Real-Time Systems

    Get PDF
    OpenMP is increasingly being considered as a convenient parallel programming model to cope with the performance requirements of critical real-time systems. Recent works demonstrate that OpenMP enables to derive guarantees on the functional and timing behavior of the system, a fundamental requirement of such systems. These works, however, focus only on the exploitation of fine grain parallelism and do not take into account the peculiarities of critical real-time systems, commonly composed of a set of concurrent functionalities. OpenMP allows exploiting the parallelism exposed within real-time tasks and among them. This paper analyzes the challenges of combining the concurrency model of real-time tasks with the parallel model of OpenMP. We demonstrate that OpenMP is suitable to develop advanced critical real-time systems by virtue of few changes on the specification, which allow the scheduling behavior desired (regarding execution priorities, preemption, migration and allocation strategies) in such systems.The research leading to these results has received funding from the Spanish Ministry of Science and Innovation, under contract TIN2015-65316-P, and from the European Union's Horizon 2020 Programme under the CLASS Project (www.classproject. eu), grant agreement No 780622.Peer ReviewedPostprint (author's final draft

    Capacity Augmentation Bound of Federated Scheduling for Parallel DAG Tasks

    Get PDF
    We present a novel federated scheduling approach for parallel real-time tasks under a general directed acyclic graph (DAG) model. We provide a capacity augmentation bound of 2 for hard real-time scheduling; here we use the worst-case execution time and critical-path length of tasks to determine schedulability. This is the best known capacity augmentation bound for parallel tasks. By constructing example task sets, we further show that the lower bound on capacity augmentation of federated scheduling is also 2 for any m \u3e 2. Hence, the gap is closed and bound 2 is a strict bound for federated scheduling. The federated scheduling algorithm is also a schedulability test that often admits task sets with utilization much greater than 50%m

    Response-time analysis of DAG tasks supporting heterogeneous computing

    Get PDF
    Hardware platforms are evolving towards parallel and heterogeneous architectures to overcome the increasing necessity of more performance in the real-time domain. Parallel programming models are fundamental to exploit the performance capabilities of these architectures. This paper proposes a novel response time analysis (RTA) for verifying the schedulability of DAG tasks supporting heterogeneous computing. It analyzes the impact of executing part of the DAG in the accelerator device. As a result, the response time upper bound of the system is more precise than the one provided by currently existing RTA targeting homogeneous architectures.This work is supported by the Spanish Ministry of Science and Innovation under contract TIN2015-65316-PPeer ReviewedPostprint (published version
    • …
    corecore