27,948 research outputs found

    Time domain modal identification/estimation of the mini-mast testbed

    Get PDF
    The Mini-Mast is a 20 meter long 3-dimensional, deployable/retractable truss structure designed to imitate future trusses in space. Presented here are results from a robust (with respect to measurement noise sensitivity), time domain, modal identification technique for identifying the modal properties of the Mini-Mast structure even in the face of noisy environments. Three testing/analysis procedures are considered: sinusoidal excitation near resonant frequencies of the Mini-Mast, frequency response function averaging of several modal tests, and random input excitation with a free response period

    Uncertainty Updating in the Description of Coupled Heat and Moisture Transport in Heterogeneous Materials

    Full text link
    To assess the durability of structures, heat and moisture transport need to be analyzed. To provide a reliable estimation of heat and moisture distribution in a certain structure, one needs to include all available information about the loading conditions and material parameters. Moreover, the information should be accompanied by a corresponding evaluation of its credibility. Here, the Bayesian inference is applied to combine different sources of information, so as to provide a more accurate estimation of heat and moisture fields [1]. The procedure is demonstrated on the probabilistic description of heterogeneous material where the uncertainties consist of a particular value of individual material characteristic and spatial fluctuations. As for the heat and moisture transfer, it is modelled in coupled setting [2]

    Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Get PDF
    INE/AUTC 12.0

    Numerical and experimental assessment of the modal curvature method for damage detection in plate structures

    Get PDF
    Use of modal curvatures obtained from modal displacement data for damage detection in isotropic and composite laminated plates is addressed through numerical examples and experimental tests. Numerical simulations are carried out employing COMSOL Multiphysics as finite element solver of the equations governing the Mindlin-Reissner plate model. Damages are introduced as localized non-smooth variations of the bending stiffness of the baseline (healthy) configuration. Experiments are also performed on steel and aluminum plates using scanning laser vibrometry. The obtained results confirm that use of the central difference method to compute modal curvatures greatly amplifies the measurement errors and its application leads to unreliable predictions for damage detection, even after denoising. Therefore, specialized ad hoc numerical techniques must be suitably implemented to enable structural health monitoring via modal curvature changes. In this study, the Savitzky-Golay filter (also referred to as least-square smoothing filter) is considered for the numerical differentiation of noisy data. Numerical and experimental results show that this filter is effective for the reliable computation of modal curvature changes in plate structures due to defects and/or damages
    corecore