159 research outputs found

    Scheduling techniques to improve the worst-case execution time of real-time parallel applications on heterogeneous platforms

    Get PDF
    The key to providing high performance and energy-efficient execution for hard real-time applications is the time predictable and efficient usage of heterogeneous multiprocessors. However, schedulability analysis of parallel applications executed on unrelated heterogeneous multiprocessors is challenging and has not been investigated adequately by earlier works. The unrelated model is suitable to represent many of the multiprocessor platforms available today because a task (i.e., sequential code) may exhibit a different work-case-execution-time (WCET) on each type of processor on an unrelated heterogeneous multiprocessors platform. A parallel application can be realistically modeled as a directed acyclic graph (DAG), where the nodes are sequential tasks and the edges are dependencies among the tasks. This thesis considers a sporadic DAG model which is used broadly to analyze and verify the real-time requirements of parallel applications. A global work-conserving scheduler can efficiently utilize an unrelated platform by executing the tasks of a DAG on different processor types. However, it is challenging to compute an upper bound on the worst-case schedule length of the DAG, called makespan, which is used to verify whether the deadline of a DAG is met or not. There are two main challenges. First, because of the heterogeneity of the processors, the WCET for each task of the DAG depends on which processor the task is executing on during actual runtime. Second, timing anomalies are the main obstacle to compute the makespan even for the simpler case when all the processors are of the same type, i.e., homogeneous multiprocessors. To that end, this thesis addresses the following problem: How we can schedule multiple sporadic DAGs on unrelated multiprocessors such that all the DAGs meet their deadlines. Initially, the thesis focuses on homogeneous multiprocessors that is a special case of unrelated multiprocessors to understand and tackle the main challenge of timing anomalies. A novel timing-anomaly-free scheduler is proposed which can be used to compute the makespan of a DAG just by simulating the execution of the tasks based on this proposed scheduler. A set of representative task-based parallel OpenMP applications from the BOTS benchmark suite are modeled as DAGs to investigate the timing behavior of real-world applications. A simulation framework is developed to evaluate the proposed method. Furthermore, the thesis targets unrelated multiprocessors and proposes a global scheduler to execute the tasks of a single DAG to an unrelated multiprocessors platform. Based on the proposed scheduler, methods to compute the makespan of a single DAG are introduced. A set of representative parallel applications from the BOTS benchmark suite are modeled as DAGs that execute on unrelated multiprocessors. Furthermore, synthetic DAGs are generated to examine additional structures of parallel applications and various platform capabilities. A simulation framework that simulates the execution of the tasks of a DAG on an unrelated multiprocessor platform is introduced to assess the effectiveness of the proposed makespan computations. Finally, based on the makespan computation of a single DAG this thesis presents the design and schedulability analysis of global and federated scheduling of sporadic DAGs that execute on unrelated multiprocessors

    Multi-Path Bound for DAG Tasks

    Full text link
    This paper studies the response time bound of a DAG (directed acyclic graph) task. Recently, the idea of using multiple paths to bound the response time of a DAG task, instead of using a single longest path in previous results, was proposed and leads to the so-called multi-path bound. Multi-path bounds can greatly reduce the response time bound and significantly improve the schedulability of DAG tasks. This paper derives a new multi-path bound and proposes an optimal algorithm to compute this bound. We further present a systematic analysis on the dominance and the sustainability of three existing multi-path bounds and the proposed multi-path bound. Our bound theoretically dominates and empirically outperforms all existing multi-path bounds. What's more, the proposed bound is the only multi-path bound that is proved to be self-sustainable

    Response Time Bounds for DAG Tasks with Arbitrary Intra-Task Priority Assignment

    Get PDF
    Most parallel real-time applications can be modeled as directed acyclic graph (DAG) tasks. Intra-task priority assignment can reduce the nondeterminism of runtime behavior of DAG tasks, possibly resulting in a smaller worst-case response time. However, intra-task priority assignment incurs dependencies between different parts of the graph, making it a challenging problem to compute the response time bound. Existing work on intra-task task priority assignment for DAG tasks is subject to the constraint that priority assignment must comply with the topological order of the graph, so that the response time bound can be computed in polynomial time. In this paper, we relax this constraint and propose a new method to compute response time bound of DAG tasks with arbitrary priority assignment. With the benefit of our new method, we present a simple but effective priority assignment policy, leading to smaller response time bounds. Comprehensive evaluation with both single-DAG systems and multi-DAG systems demonstrates that our method outperforms the state-of-the-art method with a considerable margin

    Edge Generation Scheduling for DAG Tasks using Deep Reinforcement Learning

    Full text link
    Directed acyclic graph (DAG) tasks are currently adopted in the real-time domain to model complex applications from the automotive, avionics, and industrial domain that implement their functionalities through chains of intercommunicating tasks. This paper studies the problem of scheduling real-time DAG tasks by presenting a novel schedulability test based on the concept of trivial schedulability. Using this schedulability test, we propose a new DAG scheduling framework (edge generation scheduling -- EGS) that attempts to minimize the DAG width by iteratively generating edges while guaranteeing the deadline constraint. We study how to efficiently solve the problem of generating edges by developing a deep reinforcement learning algorithm combined with a graph representation neural network to learn an efficient edge generation policy for EGS. We evaluate the effectiveness of the proposed algorithm by comparing it with state-of-the-art DAG scheduling heuristics and an optimal mixed-integer linear programming baseline. Experimental results show that the proposed algorithm outperforms the state-of-the-art by requiring fewer processors to schedule the same DAG tasks.Comment: Under revie

    High Performance Real-Time Scheduling Framework for Multiprocessor Systems

    Get PDF
    Embedded systems, performing specific functions in modern devices, have become pervasive in today's technology landscape. As many of these systems are real-time systems, they necessitate operations with stringent time constraints. This is especially evident in sectors like automotive and aerospace. This thesis introduces a High Performance Real-time Scheduling (HPRTS) framework, which is designed to navigate the multifaceted challenges faced by multiprocessor real-time systems. To begin with, the research attempts to bridge the gap between system reliability and resource sharing in Mixed-Criticality Systems (MCS). In addressing this, a novel fault-tolerance solution is presented. Its main goal is to enhance fault management and reduce blocking time during fault tolerance. Following this, the thesis delves into task allocation in systems with shared resources. In this context, we introduce a distinct Resource Contention Model (RCM). Using this model as a foundation, our allocation strategy is formulated with the aim to reduce resource contention. Moreover, in light of the escalating system complexity where tasks are represented using Directed Acyclic Graph (DAG) models, the research unveils a new Response Time Analysis (RTA) for multi-DAG systems. This particular analysis has been tailored to provide a safe and more refined bound. Reflecting on the contributions made, the achievements of the thesis highlight the potency of the HPRTS framework in steering real-time embedded systems toward high performance

    SCHEDULING REAL-TIME GRAPH-BASED WORKLOADS

    Get PDF
    Developments in the semiconductor industry in the previous decades have made possible computing platforms with very large computing capacities that, in turn, have stimulated the rapid progress of computationally intensive computer vision (CV) algorithms with highly parallelizable structure (often represented as graphs). Applications using such algorithms are the foundation for the transformation of semi-autonomous systems (e.g., advanced driver-assist systems) to future fully-autonomous systems (e.g., self-driving cars). Enabling mass-produced safety-critical systems with full autonomy requires real-time execution guarantees as a part of system certification.Since multiple CV applications may need to share the same hardware platform due to size, weight, power, and cost constraints, system component isolation is necessary to avoid explosive interference growth that breaks all execution guarantees. Existing software certification processes achieve component isolation through time partitioning, which can be broken by accelerator usage, which is essential for high-efficacy CV algorithms.The goal of this dissertation is to make a first step towards providing real-time guarantees for safety-critical systems by analyzing the scheduling of highly parallel accelerator-using workloads isolated in system components. The specific contributions are threefold.First, a general method for graph-based workloads’ response-time-bound reduction through graph structure modifications is introduced, leading to significant response-time-bound reductions. Second, a generalized real-time task model is introduced that enables real-time response-time bounds for a wider range of graph-based workloads. A proposed response-time analysis for the introduced model accounts for potential accelerator usage within tasks. Third, a scheduling approach for graph-based workloads in a single system component is proposed that ensures the temporal isolation of system components. A response-time analysis for workloads with accelerator usage is presented alongside a non-mandatory schedulability-improvement step. This approach can help to enable component-wise certification in the considered systems.Doctor of Philosoph

    DAG Scheduling and Analysis on Multi-core Systems by Modelling Parallelism and Dependency

    Get PDF

    Proceedings of the first international workshop on Investigating dataflow in embedded computing architectures (IDEA 2015), January 21, 2015, Amsterdam, The Netherlands

    Get PDF
    IDEA '15 held at HiPEAC 2015, Amsterdam, The Netherlands on January 21st, 2015 is the rst workshop on Investigating Data ow in Embedded computing Architectures. This technical report comprises of the proceedings of IDEA '15. Over the years, data ow has been gaining popularity among Embedded Systems researchers around Europe and the world. However, research on data ow is limited to small pockets in dierent communities without a common forum for discussion. The goal of the workshop was to provide a platform to researchers and practitioners to present work on modelling and analysis of present and future high performance embedded computing architectures using data ow. Despite being the rst edition of the workshop, it was very pleasant to see a total of 14 submissions, out of which 6 papers were selected following a thorough reviewing process. All the papers were reviewed by at least 5 reviewers. This workshop could not have become a reality without the help of a Technical Program Committee (TPC). The TPC members not only did the hard work to give helpful reviews in time, but also participated in extensive discussion following the reviewing process, leading to an excellent workshop program and very valuable feedback to authors. Likewise, the Organisation Committee also deserves acknowledgment to make this workshop a successful event. We take this opportunity to thank everyone who contributed in making this workshop a success

    Proceedings of the first international workshop on Investigating dataflow in embedded computing architectures (IDEA 2015), January 21, 2015, Amsterdam, The Netherlands

    Get PDF
    IDEA '15 held at HiPEAC 2015, Amsterdam, The Netherlands on January 21st, 2015 is the rst workshop on Investigating Data ow in Embedded computing Architectures. This technical report comprises of the proceedings of IDEA '15. Over the years, data ow has been gaining popularity among Embedded Systems researchers around Europe and the world. However, research on data ow is limited to small pockets in dierent communities without a common forum for discussion. The goal of the workshop was to provide a platform to researchers and practitioners to present work on modelling and analysis of present and future high performance embedded computing architectures using data ow. Despite being the rst edition of the workshop, it was very pleasant to see a total of 14 submissions, out of which 6 papers were selected following a thorough reviewing process. All the papers were reviewed by at least 5 reviewers. This workshop could not have become a reality without the help of a Technical Program Committee (TPC). The TPC members not only did the hard work to give helpful reviews in time, but also participated in extensive discussion following the reviewing process, leading to an excellent workshop program and very valuable feedback to authors. Likewise, the Organisation Committee also deserves acknowledgment to make this workshop a successful event. We take this opportunity to thank everyone who contributed in making this workshop a success
    • …
    corecore