1,677 research outputs found

    Stochastic Systems ACHIEVING RAPID RECOVERY IN AN OVERLOAD CONTROL FOR LARGE-SCALE SERVICE SYSTEMS

    Get PDF
    We consider an automatic overload control for two large service systems modeled as multi-server queues, such as call centers. We assume that the two systems are designed to operate independently, but want to help each other respond to unexpected overloads. The proposed overload control automatically activates sharing (sending some customers from one system to the other) once a ratio of the queue lengths in the two systems crosses an activation threshold (with ratio and activation threshold parameters for each direction). To prevent harmful sharing, sharing is allowed in only one direction at any time. In this paper, we are primarily concerned with ensuring that the system recovers rapidly after the overload is over, either (i) because the two systems return to normal loading or (ii) because the direction of the overload suddenly shifts in the opposite direction. To achieve rapid recovery, we introduce lower thresholds for the queue ratios, below which one-way sharing is released. As a basis for studyin

    A Switching Fluid Limit of a Stochastic Network Under a State-Space-Collapse Inducing Control with Chattering

    Full text link
    Routing mechanisms for stochastic networks are often designed to produce state space collapse (SSC) in a heavy-traffic limit, i.e., to confine the limiting process to a lower-dimensional subset of its full state space. In a fluid limit, a control producing asymptotic SSC corresponds to an ideal sliding mode control that forces the fluid trajectories to a lower-dimensional sliding manifold. Within deterministic dynamical systems theory, it is well known that sliding-mode controls can cause the system to chatter back and forth along the sliding manifold due to delays in activation of the control. For the prelimit stochastic system, chattering implies fluid-scaled fluctuations that are larger than typical stochastic fluctuations. In this paper we show that chattering can occur in the fluid limit of a controlled stochastic network when inappropriate control parameters are used. The model has two large service pools operating under the fixed-queue-ratio with activation and release thresholds (FQR-ART) overload control which we proposed in a recent paper. We now show that, if the control parameters are not chosen properly, then delays in activating and releasing the control can cause chattering with large oscillations in the fluid limit. In turn, these fluid-scaled fluctuations lead to severe congestion, even when the arrival rates are smaller than the potential total service rate in the system, a phenomenon referred to as congestion collapse. We show that the fluid limit can be a bi-stable switching system possessing a unique nontrivial periodic equilibrium, in addition to a unique stationary point

    Fairness in overloaded parallel queues

    Full text link
    Maximizing throughput for heterogeneous parallel server queues has received quite a bit of attention from the research community and the stability region for such systems is well understood. However, many real-world systems have periods where they are temporarily overloaded. Under such scenarios, the unstable queues often starve limited resources. This work examines what happens during periods of temporary overload. Specifically, we look at how to fairly distribute stress. We explore the dynamics of the queue workloads under the MaxWeight scheduling policy during long periods of stress and discuss how to tune this policy in order to achieve a target fairness ratio across these workloads

    Autonomic Overload Management For Large-Scale Virtualized Network Functions

    Get PDF
    The explosion of data traffic in telecommunication networks has been impressive in the last few years. To keep up with the high demand and staying profitable, Telcos are embracing the Network Function Virtualization (NFV) paradigm by shifting from hardware network appliances to software virtual network functions, which are expected to support extremely large scale architectures, providing both high performance and high reliability. The main objective of this dissertation is to provide frameworks and techniques to enable proper overload detection and mitigation for the emerging virtualized software-based network services. The thesis contribution is threefold. First, it proposes a novel approach to quickly detect performance anomalies in complex and large-scale VNF services. Second, it presents NFV-Throttle, an autonomic overload control framework to protect NFV services from overload within a short period of time, allowing to preserve the QoS of traffic flows admitted by network services in response to both traffic spikes (up to 10x the available capacity) and capacity reduction due to infrastructure problems (such as CPU contention). Third, it proposes DRACO, to manage overload problems arising in novel large-scale multi-tier applications, such as complex stateful network functions in which the state is spread across modern key-value stores to achieve both scalability and performance. DRACO performs a fine-grained admission control, by tuning the amount and type of traffic according to datastore node dependencies among the tiers (which are dynamically discovered at run-time), and to the current capacity of individual nodes, in order to mitigate overloads and preventing hot-spots. This thesis presents the implementation details and an extensive experimental evaluation for all the above overload management solutions, by means of a virtualized IP Multimedia Subsystem (IMS), which provides modern multimedia services for Telco operators, such as Videoconferencing and VoLTE, and which is one of the top use-cases of the NFV technology

    Chance Constrained Optimal Power Flow: Risk-Aware Network Control under Uncertainty

    Full text link

    © 2012 INFORMS Overflow Networks: Approximations and

    Get PDF
    Motivated by call center cosourcing problems, we consider a service network operated under an overflow mechanism. Calls are first routed to an in-house (or dedicated) service station that has a finite waiting room. If the waiting room is full, the call is overflowed to an outside provider (an overflow station) that might also be serving overflows from other stations. We establish approximations for overflow networks with many servers under a resource-pooling assumption that stipulates, in our context, that the fraction of overflowed calls is nonnegligible. Our two main results are (i) an approximation for the overflow processes via limit theorems and (ii) asymptotic independence between each of the in-house stations and the overflow station. In particular, we show that, as the system becomes large, the dependency between each in-house station and the overflow station becomes negligible. Independence between stations in overflow networks is assumed in the literature on call centers, and we provide a rigorous support for those useful heuristics. Subject classifications: overflow networks; cosourcing; heavy-traffic approximations; separation of time scales

    An Exploration of Different Motivations Between Stakeholders and Visitors of the Potomac Heritage National Scenic Trail

    Get PDF
    Visitors have different motivations associated with parks and protected areas, and the people who run those areas are also different from visitors due to their unique positions. This is especially true for the Potomac Heritage National Scenic Trail (POHE), where stakeholders – ranging from park managers and Department of Transportation planners to volunteers of nonprofits and historical societies collaborate to manage sections along the 822-mile extent of the trail. Building on previous work itemizing the diversity of motivations for visitation to parks and protected areas, this study investigates similarities and differences in stakeholder and manager Recreation Experience Preferences by clustering responses gathered from a Public Participation Geographic Information System (PPGIS) survey sent to stakeholders and collected from visitors onsite in 2021. Analysis using Multiple Correspondence Analysis and comparison of the demographic and visitor use characteristics associated with these two groups allows stakeholders to understand their demographic similarities and use differences to the visitors, as well as leverage a metric to understand how motivations change over time as demographics and visitor use patterns change. This tool also reinforces the wide range of motivations to this culturally and geographically diverse trail while upholding previous research in the field

    Quasi-stationary analysis for queues with temporary overload

    Get PDF
    Motivated by the high variation in transmission rates for document transfer in the Internet and file down loads from web servers, we study the buffer content in a queue with a fluctuating service rate. The fluctuations are assumed to be driven by an independent stochastic process. We allow the queue to be overloaded in some of the server states. In all but a few special cases, either exact analysis is not tractable, or the dependence of system performance in terms of input parameters (such as the traffic load) is hidden in complex or implicit characterizations. Various asymptotic regimes have been considered to develop insightful approximations. In particular, the so-called quasistationary approximation has proven extremely useful under the assumption of uniform stability. We refine the quasi-stationary analysis to allow for temporary instability, by studying the “effective system load” which captures the effect of accumulated work during periods in which the queue is unstable

    Integration of DERs on power systems: challenges and opportunities

    Get PDF
    The integration of large amounts of distributed energy resources (DERs) as photovoltaic solar generation, micro-cogeneration, electric vehicles, distributed storage or demand response pose new challenges and opportunities on the power sector. In this paper, we review the current trends on: i) how consumers adopting DERs can self-provide energy services and provide other services at system level, ii) what can be expected at distribution networks and how retail markets will evolve with more proactive and market engaged consumers, iii) what are the effects and integration of DERs on wholesale markets, and iv) what are the challenges that DERs pose on cybersecurity and the opportunities for improving system resilience. Several recommendations are given for achieving an efficient integration of DERs. For instance, the design of a comprehensive system of prices and charges and the elimination of existing barriers for market participation are crucial reforms to achieve a level playing field between distributed and centralized resources when providing electricity services. This paper summarizes part of the work developed under the MIT Utility of the Future study
    • …
    corecore