188 research outputs found

    A Novel Respiratory Rate Estimation Algorithm from Photoplethysmogram Using Deep Learning Model

    Get PDF
    Respiratory rate (RR) is a critical vital sign that can provide valuable insights into various medical conditions, including pneumonia. Unfortunately, manual RR counting is often unreliable and discontinuous. Current RR estimation algorithms either lack the necessary accuracy or demand extensive window sizes. In response to these challenges, this study introduces a novel method for continuously estimating RR from photoplethysmogram (PPG) with a reduced window size and lower processing requirements. To evaluate and compare classical and deep learning algorithms, this study leverages the BIDMC and CapnoBase datasets, employing the Respiratory Rate Estimation (RRest) toolbox. The optimal classical techniques combination on the BIDMC datasets achieves a mean absolute error (MAE) of 1.9 breaths/min. Additionally, the developed neural network model utilises convolutional and long short-term memory layers to estimate RR effectively. The best-performing model, with a 50% train–test split and a window size of 7 s, achieves an MAE of 2 breaths/min. Furthermore, compared to other deep learning algorithms with window sizes of 16, 32, and 64 s, this study’s model demonstrates superior performance with a smaller window size. The study suggests that further research into more precise signal processing techniques may enhance RR estimation from PPG signals

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    Development of a Signal Processing Library for Extraction of SpO2, HR, HRV, and RR from Photoplethysmographic Waveforms

    Get PDF
    Non-invasive remote physiological monitoring of soldiers on the battlefield has the potential to provide fast, accurate status assessments that are key to improving the survivability of critical injuries. The development of WPI’s wearable wireless pulse oximeter, designed for field-based applications, has allowed for the optimization of important hardware features such as physical size and power management. However, software-based digital signal processing (DSP) methods are still required to perform physiological assessments. This research evaluated DSP methods that were capable of providing arterial oxygen saturation (SpO2), heart rate (HR), heart rate variability (HRV), and respiration rate (RR) measurements derived from data acquired using a single optical sensor. In vivo experiments were conducted to evaluate the accuracies of the processing methods across ranges of physiological conditions. Of the algorithms assessed, 13 SpO2 methods, 1 HR method, 6 HRV indices, and 4 RR methods were identified that provided clinically acceptable measurement accuracies and could potentially be employed in a wearable pulse oximeter
    • …
    corecore