2 research outputs found

    Long-term monitoring of respiratory metrics using wearable devices

    Get PDF
    Recently, there has been an increased interest in monitoring health using wearable sensors technologies however, few have focused on breathing. The utility of constant monitoring of breathing is currently not well understood, both for general health as well as respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD) that have significant prevalence in society. Having a wearable device that could measure respiratory metrics continuously and non-invasively with high adherence would allow us to investigate the significance of ambulatory breathing monitoring in health and disease management. The purpose of this thesis was to determine if it was feasible to continuously monitor respiratory metrics. To do this, we identified pulse oximetry to provide the best balance between use of mature signal processing methods, commercial availability, power efficiency, monitoring site and perceived wearability. Through a survey, it was found users would monitor their breathing, irrespective of their health status using a smart watch. Then it was found that reducing the duty cycle and power consumption adversely affected the reliability to capture accurate respiratory rate measurements through pulse oximetry. To account for the decreased accuracy of PPG derived respiratory rate at higher rates, a long short-term memory (LSTM) network and a U-Net were proposed, characterised and implemented. In addition to respiratory rate, inspiration time, expiration time, inter-breath intervals and the Inspiration:Expiration ratio were also predicted. Finally, the accuracy of these predictions was validated using pilot data from 11 healthy participants and 11 asthma participants. While percentage bias was low, the 95\% limits of agreement was high. While there is likely going to be enthusiastic uptake in wearable device use, it remains unseen whether clinical utility can be achieved, in particular the ability to forecast respiratory status. Further, the issues of sensor noise and algorithm performance during activity was not calculated. However, this body of work has investigated and developed the use of pulse oximetry, classical signal processing and machine learning methodologies to extract respiratory metrics to lay a foundation for both the hardware and software requirements in future clinical research
    corecore