981 research outputs found

    Resource-based enactment and adaptation of workflows from activity diagrams

    Get PDF
    Workflow management deals with different types of dependencies among tasks, in particular data- and policy-driven. The ability to reason on dependencies of different type allows workflow designers to consider different alternatives, or to define customized flows, reducing non-determinism. We propose a resource-centered view, in which both data-dependency between tasks and plan-dependent ordering of tasks are expressed as production and consumption of resources. This view is translated into a rule-based formalism, expressed in terms of multi-set rewriting for workflow enactment. In turn, rules are themselves seen as resources, so that they are prone to the same rewriting process, in order to redefine process schemas. We show how workflows expressed as activity diagrams can be translated to the proposed formalism, exploiting enforced generative patterns applied to triple graph grammars, and how redefinition of workflow processes can occur through typical patterns of adaptation. We also discuss possible concrete syntaxes for the obtained rules

    E-BioFlow: Different Perspectives on Scientific Workflows

    Get PDF
    We introduce a new type of workflow design system called\ud e-BioFlow and illustrate it by means of a simple sequence alignment workflow. E-BioFlow, intended to model advanced scientific workflows, enables the user to model a workflow from three different but strongly coupled perspectives: the control flow perspective, the data flow perspective, and the resource perspective. All three perspectives are of\ud equal importance, but workflow designers from different domains prefer different perspectives as entry points for their design, and a single workflow designer may prefer different perspectives in different stages of workflow design. Each perspective provides its own type of information, visualisation and support for validation. Combining these three perspectives in a single application provides a new and flexible way of modelling workflows

    Using metamodels and workflows in a software maintenance environment

    Get PDF
    The objective of Software Engineering Environments (SEE) is to allow the integrated and automatic management and control of a specific process or group of processes of the software (ISO/IEC, 2000). In broader terms, the MANTIS project aims to define and construct an integral environment for the management of Software Maintenance Process (SMP). Due to the large number of different aspects that have to be considered, we have defined an architecture with 4 conceptual levels. Each of these levels incorporates concepts at a specific level of abstraction and generality. We present a proposal of a metamodel for the SMP based on the ontology formulated by Kitchenham et al.(1999) and in the Workflow Reference Model of the Workflow Management Coalition (WFMC, 1995). In so doing our aim is to incorporate in the said ontology, the aspects of process enaction that the workflow technology resolves in what we consider to be a satisfactory fashion.Eje: Ingeniería de softwareRed de Universidades con Carreras en Informática (RedUNCI

    Complex approach to service development

    Get PDF
    Modern companies including telecommunication companies and mobile operators working in the global environment should guarantee technological effectiveness and innovation, renewing their technologies and services. Operation Support System/Business Support System is used in telecommunication companies. In current state-of-the-art approaches, several iterations involving analysts and system architects are necessary, methodologies allow modeling non-functional or functional requirements but they do not take into account the interaction between functional and non-functional requirements as well as collaboration between services. Web Services Agreement is a convenient way to contain QoS parameters but state-of-the-art SLA-aware methods cannot support all classes of non-functional parameters and provide run-time support and dynamic reconfiguration at the same time. The approach proposed in this paper fills this gap. It employs a well-defined workflow and analysis model for developing and adapting complex software systems including support of all classes of non-functional parameters and providing run-time support and dynamic reconfiguration of provided services

    Domain Objects and Microservices for Systems Development: a roadmap

    Full text link
    This paper discusses a roadmap to investigate Domain Objects being an adequate formalism to capture the peculiarity of microservice architecture, and to support Software development since the early stages. It provides a survey of both Microservices and Domain Objects, and it discusses plans and reflections on how to investigate whether a modeling approach suited to adaptable service-based components can also be applied with success to the microservice scenario

    A novel workflow management system for handling dynamic process adaptation and compliance

    Get PDF
    Modern enterprise organisations rely on dynamic processes. Generally these processes cannot be modelled once and executed repeatedly without change. Enterprise processes may evolve unpredictably according to situations that cannot always be prescribed. However, no mechanism exists to ensure an updated process does not violate any compliance requirements. Typical workflow processes may follow a process definition and execute several thousand instances using a workflow engine without any changes. This is suitable for routine business processes. However, when business processes need flexibility, adaptive features are needed. Updating processes may violate compliance requirements so automatic verification of compliance checking is necessary. The research work presented in this Thesis investigates the problem of current workflow technology in defining, managing and ensuring the specification and execution of business processes that are dynamic in nature, combined with policy standards throughout the process lifycle. The findings from the literature review and the system requirements are used to design the proposed system architecture. Since a two-tier reference process model is not sufficient as a basis for the reference model for an adaptive and compliance workflow management system, a three-tier process model is proposed. The major components of the architecture consist of process models, business rules and plugin modules. This architecture exhibits the concept of user adaptation with structural checks and dynamic adaptation with data-driven checks. A research prototype - Adaptive and Compliance Workflow Management System (ACWfMS) - was developed based on the proposed system architecture to implement core services of the system for testing and evaluation purposes. The ACWfMS enables the development of a workflow management tool to create or update the process models. It automatically validates compliance requirements and, in the case of violations, visual feedback is presented to the user. In addition, the architecture facilitates process migration to manage specific instances with modified definitions. A case study based on the postgraduate research process domain is discussed

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    IT supported business process negotiation, reconciliation and execution for cross-organisational e-business collaboration

    Get PDF
    In modern enterprises, workflow technology is commonly used for business process automation. Established business processes represent successful business practice and become a crucial part of corporate assets. In the Internet era, electronic business is chosen by more and more organisations as a preferred way of conducting business practice. In response to the increasing demands for cross-organisational business automation, especially those raised by the B2B electronic commerce community, the concept of collaboration between automated business processes, i.e. workflow collaboration, is emerging. Otherwise, automation would be confined within individual organisations and cross-organisational collaboration would still have to be carried out manually. However, much of the previous research work overlooks the acquisition of the compatible workflows at build time and simply assumes that compatibility is achieved through face-toface negotiation followed by a design from scratch approach that creates collaborative workflows based on the agreement resulted from the negotiation. The resource-intensive and error-prone approach can hardly keep up with the pace of today’s marketplace with increasing transaction volume and complexity. This thesis identifies the requirements for cross-organisational workflow collaboration (COWCO) through an integrated approach, proposes a comprehensive supporting framework, explains the key enabling techniques of the framework, and implements and evaluates them in the form of a prototype system – COWCO-Guru. With the support of such a framework, cross-organisational workflow collaboration can be managed and conducted with reduced human effort, which will further facilitate cross-organisational e-business, especially B2B e-commerce practices
    corecore