358 research outputs found

    Formal Methods in Factory Automation

    Get PDF

    TOWARDS DIGITAL TWIN-DRIVEN PERFORMANCE EVALUATION METHODOLOGY OF FMS

    Get PDF
    The paper presents a method of automated modelling and performance evaluation of concurrent production flows carried out in Flexible Manufacturing Systems. The method allows for quick assessment of various variants of such systems, considering their structure and the organization of production flow of possible ways of their implementation. Its essence is the conditions imposed on the designed model, limiting the space of possible variants of the production flow only to deadlock-free variants. The practical usefulness of the model implemented in the proposed method illustrates the example, which describes the simultaneous assessment of alternative variants of the flexible machining module's structure and the planned multi-assortment production. The ability of the method to focus on feasible solutions offers attractive perspectives for guiding the Digital Twin-like scenario in situations caused by the need to change the production flow

    Process Completing Sequences for Resource Allocation Systems with Synchronization

    Get PDF
    This paper considers the problem of establishing live resource allocation in workflows with synchronization stages. Establishing live resource allocation in this class of systems is challenging since deciding whether a given level of resource capacities is sufficient to complete a single process is NP-complete. In this paper, we develop two necessary conditions and one sufficient condition that provide quickly computable tests for the existence of process completing sequences. The necessary conditions are based on the sequence of completions of � subprocesses that merge together at a synchronization. Although the worst case complexity is O(2�), we expect the number of subprocesses combined at any synchronization will be sufficiently small so that total computation time remains manageable. The sufficient condition uses a reduction scheme that computes a sufficient capacity level of each resource type to complete and merge all � subprocesses. The worst case complexity is O(�⋅�), where � is the number of synchronizations. Finally, the paper develops capacity bounds and polynomial methods for generating feasible resource allocation sequences for merging systems with single unit allocation. This method is based on single step look-ahead for deadly marked siphons and is O(2�). Throughout the paper, we use a class of Petri nets called Generalized Augmented Marked Graphs to represent our resource allocation systems

    Synthesis of Liveness-Enforcing Petri Net Supervisors Based on a Think-Globally-Act-Locally Approach and a Structurally Minimal Method for Flexible Manufacturing Systems

    Get PDF
    This paper proposes a deadlock prevention policy for flexible manufacturing systems (FMSs) based on a think-globally-act-locally approach and a structurally minimal method. First, by using the think-globally-act-locally approach, a global idle place is temporarily added to a Petri net model with deadlocks. Then, at each iteration, an integer linear programming problem is formulated to design a minimal number of maximally permissive control places. Therefore, a supervisor with a low structural complexity is obtained since the number of control places is greatly compressed. Finally, by adding the designed supervisor, the resulting net model is optimally or near-optimally controlled. Three examples from the literature are used to illustrate the proposed method

    Deadlock Prevention Policy with Behavioral Optimality or Suboptimality Achieved by the Redundancy Identification of Constraints and the Rearrangement of Monitors

    Get PDF
    This work develops an iterative deadlock prevention method for a special class of Petri nets that can well model a variety of flexible manufacturing systems. A deadlock detection technique, called mixed integer programming (MIP), is used to find a strict minimal siphon (SMS) in a plant model without a complete enumeration of siphons. The policy consists of two phases. At the first phase, SMSs are obtained by MIP technique iteratively and monitors are added to the complementary sets of the SMSs. For the possible existence of new siphons generated after the first phase, we add monitors with their output arcs first pointed to source transitions at the second phase to avoid new siphons generating and then rearrange the output arcs step by step on condition that liveness is preserved. In addition, an algorithm is proposed to remove the redundant constraints of the MIP problem in this paper. The policy improves the behavioral permissiveness of the resulting net and greatly enhances the structural simplicity of the supervisor. Theoretical analysis and experimental results verify the effectiveness of the proposed method

    Scheduling and discrete event control of flexible manufacturing systems based on Petri nets

    Get PDF
    A flexible manufacturing system (FMS) is a computerized production system that can simultaneously manufacture multiple types of products using various resources such as robots and multi-purpose machines. The central problems associated with design of flexible manufacturing systems are related to process planning, scheduling, coordination control, and monitoring. Many methods exist for scheduling and control of flexible manufacturing systems, although very few methods have addressed the complexity of whole FMS operations. This thesis presents a Petri net based method for deadlock-free scheduling and discrete event control of flexible manufacturing systems. A significant advantage of Petri net based methods is their powerful modeling capability. Petri nets can explicitly and concisely model the concurrent and asynchronous activities, multi-layer resource sharing, routing flexibility, limited buffers and precedence constraints in FMSs. Petri nets can also provide an explicit way for considering deadlock situations in FMSs, and thus facilitate significantly the design of a deadlock-free scheduling and control system. The contributions of this work are multifold. First, it develops a methodology for discrete event controller synthesis for flexible manufacturing systems in a timed Petri net framework. The resulting Petri nets have the desired qualitative properties of liveness, boundedness (safeness), and reversibility, which imply freedom from deadlock, no capacity overflow, and cyclic behavior, respectively. This precludes the costly mathematical analysis for these properties and reduces on-line computation overhead to avoid deadlocks. The performance and sensitivity of resulting Petri nets, thus corresponding control systems, are evaluated. Second, it introduces a hybrid heuristic search algorithm based on Petri nets for deadlock-free scheduling of flexible manufacturing systems. The issues such as deadlock, routing flexibility, multiple lot size, limited buffer size and material handling (loading/unloading) are explored. Third, it proposes a way to employ fuzzy dispatching rules in a Petri net framework for multi-criterion scheduling. Finally, it shows the effectiveness of the developed methods through several manufacturing system examples compared with benchmark dispatching rules, integer programming and Lagrangian relaxation approaches

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. 2004. Faculdade de Engenharia. Universidade do Port

    Process Completing Sequences for Resource Allocation Systems with Synchronization

    Get PDF
    This paper considers the problem of establishing live resource allocation in workflows with synchronization stages. Establishing live resource allocation in this class of systems is challenging since deciding whether a given level of resource capacities is sufficient to complete a single process is NP-complete. In this paper, we develop two necessary conditions and one sufficient condition that provide quickly computable tests for the existence of process completing sequences. The necessary conditions are based on the sequence of completions of subprocesses that merge together at a synchronization. Although the worst case complexity is O(2), we expect the number of subprocesses combined at any synchronization will be sufficiently small so that total computation time remains manageable. The sufficient condition uses a reduction scheme that computes a sufficient capacity level of each resource type to complete and merge all subprocesses. The worst case complexity is O(â‹…), where is the number of synchronizations. Finally, the paper develops capacity bounds and polynomial methods for generating feasible resource allocation sequences for merging systems with single unit allocation. This method is based on single step look-ahead for deadly marked siphons and is O(2). Throughout the paper, we use a class of Petri nets called Generalized Augmented Marked Graphs to represent our resource allocation systems

    On the Performance Estimation and Resource Optimisation in Process Petri Nets

    Get PDF
    Many artificial systems can be modeled as discrete dynamic systems in which resources are shared among different tasks. The performance of such systems, which is usually a system requirement, heavily relies on the number and distribution of such resources. The goal of this paper is twofold: first, to design a technique to estimate the steady-state performance of a given system with shared resources, and second, to propose a heuristic strategy to distribute shared resources so that the system performance is enhanced as much as possible. The systems under consideration are assumed to be large systems, such as service-oriented architecture (SOA) systems, and modeled by a particular class of Petri nets (PNs) called process PNs. In order to avoid the state explosion problem inherent to discrete models, the proposed techniques make intensive use of linear programming (LP) problems
    • …
    corecore