1,148 research outputs found

    Resource-Aware Scheduling of Distributed Ontological Reasoning Tasks in Wireless Sensor Networks

    Get PDF

    On the design of a flexible software platform for In-building OTT service provisioning

    Get PDF

    Autonomous service composition in symbiotic networks

    Get PDF
    Part 2: PhD Workshop: Autonomic Network and Service ManagementInternational audienceTo cope with the ever-growing number of wired and wireless networks, we introduce the notion of so-called symbiotic networks. These networks seamlessly operate across layers and over network boundaries, resulting in improved scalability, dependability, and energy efficiency. This particular Ph.D. research focuses on software services operating in such symbiotic networks. When two or more networks merge, the services provided on them may be combined into a service composition that is much more than the sum of its parts. Driven by two distinct use cases, we aim to enable fully autonomous service composition and resource provisioning. For the first use case, an in-building over-the-top service platform, we describe a software architecture and a set of generic resource provisioning algorithms. The second use case, which focuses on wireless body area networks, will allow us to expand our research domain into highly dynamic symbiotic network environments, where services appear and disappear more frequently

    Symbiotic service composition in distributed sensor networks

    Get PDF
    To cope with the evergrowing number of colocated networks and the density they exhibit, we introduce symbiotic networks-networks that intelligently share resources and autonomously adapt to the dynamicity thereof. By allowing the software services provided in such networks to operate in an equally symbiotic manner, new opportunities for the so-called service compositions arise, which take advantage of the multitude of services and combine them to achieve goals set out by the individual networks. To accommodate services in large-scale symbiotic networks, including wireless sensor networks, we propose a software platform which autonomously constructs and orchestrates such compositions. Furthermore, upon changes in the infrastructure, the platform responds by adapting compositions to reflect the changed context. To enable the interaction between services offered by arbitrary partners, the platform deploys ontologies to achieve a common vocabulary and semantic rules to express the policies imposed by the networks involved. By applying the platform to typical scenarios from the field of sensor-augmented cargo transportation and logistics, we illustrate its applicability and, through performance evaluation, show a significant increase in process efficiency. Additionally, by means of a generic problem generator, we quantify the scalability of our platform and show the importance of an appropriate priority function, one of the core constituents of our service composition approach

    Model-Driven Methodology for Rapid Deployment of Smart Spaces based on Resource-Oriented Architectures

    Get PDF
    Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym

    A Software Defined Networking architecture for the Internet-of-Things

    Full text link

    Energy adaptive buildings:From sensor data to being aware of users

    Get PDF

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities
    corecore