2,510 research outputs found

    Go with the Flow - Design of Cloud Logistics Service Blueprints

    Get PDF
    By adopting principles of cloud computing to the \ logistics domain the paradigm of Cloud Logistics is derived. It \ appears to be a promising paradigm in order to evolve logistics \ into being more flexible and collaborative. Yet, appropriate \ concepts that enable the cloud logistics paradigm are missing. \ In the paper, existing body of literature is reviewed and a \ definition and a framework of cloud logistics is given. Further, \ service blueprinting is combined with domain engineering and \ general morphological analysis in order to create a suitable \ method for designing cloud oriented service blueprints. Those \ are focusing on domain-specific flows and transformations \ enabling cloud oriented business collaboration. The method \ is applied to the logistics domain and a cloud logistics service \ blueprint is designed. Finally, the concept is evaluated with \ real use cases from logistics service providers

    Integration of heterogeneous devices and communication models via the cloud in the constrained internet of things

    Get PDF
    As the Internet of Things continues to expand in the coming years, the need for services that span multiple IoT application domains will continue to increase in order to realize the efficiency gains promised by the IoT. Today, however, service developers looking to add value on top of existing IoT systems are faced with very heterogeneous devices and systems. These systems implement a wide variety of network connectivity options, protocols (proprietary or standards-based), and communication methods all of which are unknown to a service developer that is new to the IoT. Even within one IoT standard, a device typically has multiple options for communicating with others. In order to alleviate service developers from these concerns, this paper presents a cloud-based platform for integrating heterogeneous constrained IoT devices and communication models into services. Our evaluation shows that the impact of our approach on the operation of constrained devices is minimal while providing a tangible benefit in service integration of low-resource IoT devices. A proof of concept demonstrates the latter by means of a control and management dashboard for constrained devices that was implemented on top of the presented platform. The results of our work enable service developers to more easily implement and deploy services that span a wide variety of IoT application domains

    Cloud manufacturing architecture: a critical analysis of its development, characteristics and future agenda to support its adoption

    Get PDF
    Purpose: In the last decade, cloud manufacturing (CMfg) has attracted considerable attention from academia and industry worldwide. It is widely accepted that the design and analysis of cloud manufacturing architecture (CMfg-A) are the basis for developing and applying CMfg systems. However, in existing studies, analysis of the status, development process and internal characteristics of CMfg-A is lacking, hindering an understanding of the research hotspots and development trends of CMfg-A. Meanwhile, effective guidance is lacking on the construction of superior CMfg-As. The purpose of this paper is to review the relevant research on CMfg-A via identification of the main layers, elements, relationships, structure and functions of CMfg-A to provide valuable information to scholars and practitioners for further research on key CMfg-A technologies and the construction of CMfg systems with superior performance. Design/methodology/approach: This study systematically reviews the relevant research on CMfg-A across transformation process to internal characteristics by integrating quantitative and qualitative methods. First, the split and reorganization method is used to recognize the main layers of CMfg-A. Then, the transformation process of six main layers is analysed through retrospective analysis, and the similarities and differences in CMfg-A are obtained. Subsequently, based on systematic theory, the elements, relationships, structure and functions of CMfg-A are inductively studied. A 3D printing architecture design case is conducted to discuss the weakness of the previous architecture and demonstrate how to improve it. Finally, the primary current trends and future opportunities are presented. Findings: By analyzing the transformation process of CMfg-A, this study finds that CMfg-A resources are developing from tangible resources into intangible resources and intelligent resources. CMfg-A technology is developing from traditional cloud computing-based technology towards advanced manufacturing technology, and CMfg-A application scope is gradually expanding from traditional manufacturing industry to emerging manufacturing industry. In addition, by analyzing the elements, relationships, structure and functions of CMfg-A, this study finds that CMfg-A is undergoing a new generation of transformation, with trends of integrated development, intelligent development, innovative development and green development. Case study shows that the analysis of the development trend and internal characteristics of the architecture facilitates the design of a more effective architecture. Research limitations/implications: This paper predominantly focuses on journal articles and some key conference papers published in English and Chinese. The reason for considering Chinese articles is that CMfg was proposed by the Chinese and a lot of Chinese CMfg-A articles have been published in recent years. CMfg is suitable for the development of China’s manufacturing industry because of China’s intelligent manufacturing environment. It is believed that this research has reached a reliable comprehensiveness that can help scholars and practitioners establish new research directions and evaluate their work in CMfg-A. Originality/value: Prior studies ignore the identification and analysis of development process and internal characteristics for the current development of CMfg-A, including the main layers identification of different CMfg-As and the transformation process analysis of these main layers, and in-depth analysis of the inner essence of CMfg-A (such as its elements, relationships, structure and functions). This study addresses these limitations and provides a comprehensive literature review

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities

    A Logistics Information System Model of Agricultural Product Based on Cloud Computing

    Get PDF
    Cloud computing technology can play an important role in the various links of agricultural products logistics system, and provide strong technical support for the development of logistics management. The system architecture of agricultural product logistics information system based on cloud computing is drawn in the paper, which include the base layer, service layer, interface layer and user layer. From the perspective of the system functions, the agricultural product logistics information system based on cloud computing is designed to contain six subsystems of the planting management subsystem, process management subsystem, storage management subsystem, transportation management subsystem, order processing subsystem, consumer query subsystem. It has the features of with the help of the RFID technology, cloud computing technology and data mining technology. We decompose the index evaluation system of the agricultural product logistics information system into twelve scheme layers, and use the analytic hierarchy process to determine the weight of the evaluation indexes of each layer

    A Case Study of Edge Computing Implementations: Multi-access Edge Computing, Fog Computing and Cloudlet

    Get PDF
    With the explosive growth of intelligent and mobile devices, the current centralized cloud computing paradigm is encountering difficult challenges. Since the primary requirements have shifted towards implementing real-time response and supporting context awareness and mobility, there is an urgent need to bring resources and functions of centralized clouds to the edge of networks, which has led to the emergence of the edge computing paradigm. Edge computing increases the responsibilities of network edges by hosting computation and services, therefore enhancing performances and improving quality of experience (QoE). Fog computing, multi-access edge computing (MEC), and cloudlet are three typical and promising implementations of edge computing. Fog computing aims to build a system that enables cloud-to-thing service connectivity and works in concert with clouds, MEC is seen as a key technology of the fifth generation (5G) system, and Cloudlet is a micro-data center deployed in close proximity. In terms of deployment scenarios, Fog computing focuses on the Internet of Things (IoT), MEC mainly provides mobile RAN application solutions for 5G systems, and cloudlet offloads computing power at the network edge. In this paper, we present a comprehensive case study on these three edge computing implementations, including their architectures, differences, and their respective application scenario in IoT, 5G wireless systems, and smart edge. We discuss the requirements, benefits, and mechanisms of typical co-deployment cases for each paradigm and identify challenges and future directions in edge computing

    Cloud Computing for Efficient Data Storage and Processing in Maritime Logistics

    Get PDF
    Considering that the maritime logistics is by volume and financial value the largest logistics sector enabling global trade, the number of supply chains is constantly growing, as well as the number of supply chain stakeholders. Due to the large number of stakeholders in the supply chains, the volume of generated data is enormous. Therefore, it is necessary to implement modern and intelligent solutions for processing and storing the data. One possible solution for processing and storing the data in maritime logistics is cloud computing. There are different approaches to implementing cloud computing in maritime logistics. In this paper, the authors present a detailed structure of the maritime cloud and compare it with the legacy systems. Finally, the advantages and challenges arising from the implementation of cloud computing in maritime logistics are analyzed
    corecore